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The modern business landscape is increasingly dynamic and data-rich, driven by the 
technological changes and demands for sustainability compliance. Traditional 
quality control approaches heavily rely on historical data and only detect problem 
after it has occurred. This reactive approach falls short in today’s fast-moving and 
data-driven markets. This paper examines the transformation of SQC into an 
adaptive, AI-powered analytics framework that brings machine learning, neural 
networks, and real-time data analytics. This integration enables predictive and 
prescriptive decision making hence supporting sustainable quality enhancement. 
The paper posits SQC as a strategic enabler of sustainable quality enhancement, 
contributing to the quality management literature by redefining SQC as an 
intelligent, analytic-driven systems. This paper offers the practical implications and 
emerging cases and proposes directions particularly in the ethical integration of AI 
and cross-department adoption. These insights then highlight the need to reposition 
SQC as a key driver of long-term business agility, resilience and value in the era of 
Industry 4.0. 
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1. Introduction 
 

Over the past century, quality management has transformed significantly from basic inspection 
routines into intelligent systems that drive both operational efficiency and sustainability. In the early 
1900s, quality control relied on manual inspection to detect defects post-production. This reactive 
approach matured in the 1920s and 1930s with the emergence of Statistical Quality Control (SQC), 
pioneered by Shewhart and others. Tools like control charts and acceptance sampling shifted the 
focus towards reducing process variation which promote product consistency while minimizing waste 
and resource inefficiency. As industries evolved, quality gurus such Deming and Juran expanded SQC 
into broader quality philosophies centred on prevention, statistical thinking and employee 
involvement. These principles were further embedded by Total Quality Management (TQM), Just-In-
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Time (JIT) and Kaizen, which brought quality management closer to sustainability through waste 
elimination, increased customer satisfaction and long-term value creation. 

In parallel, the business environment has entered a new era of rapid evolvement. Today’s 
business organizations are facing with intense competitive pressures, shifting customer’s 
expectations, and the continued consequences of global economic disruptions ranging from the 
COVID-19 pandemic (2020-2022) to the escalating impacts of climate change. The acceleration of 
Industrial Revolution 4.0 (IR 4.0) and the emergence of powerful Artificial Intelligence (AI) 
technologies are pushing business organizations to rethink their traditional workflows, restructure 
organization hierarchies to capture value from AI.  

AI is no longer an option, it is inevitable. It is strategic imperative, as companies seek cost cuttings 
and improve scalability [1]. At the same time, AI is also enticing businesses to explore new models 
and services such as autonomous decision-making and intelligent process automation. The 
availability of smart assistants and AI-driven tools are already reshaping core business functions [2], 
although many organizations are still in the early stages of acknowledging these potentials. 
Obviously, there is feedback loop between the evolving business environment and AI development, 
each influencing and accelerates one another.   

Sustainability agenda, too, has become central to business strategy. Organizations not only 
expected to deliver high-quality outputs but also to responsibly reducing environmental impact, 
conserving resources, and complying with social and regulatory demands. Driven by advances in AI 
technologies that enable real-time customer feedback and with the IoT devices and digital systems, 
have contributed to a data-rich environment that generate vast streams of data. These offer the 
opportunity to transform this data into actionable insights that support faster, more proactive and 
sustainable decision-making compared to the traditional quality tools can support.  

This article explores how AI-powered analytics can reposition SQC as a dynamic, sustainability-
oriented strategy. It addresses two central research questions: (1) How can AI enhance SQC to 
support sustainable quality management? and (2) What are the practical and ethical challenges of 
AI-SQC integration?  

The remainder of article is structured as follows. Section 2 revisits the shifting paradigm of quality 
from traditional, reactive process towards real-time, predictive, and prescriptive analytics. Section 3 
explores the integration of AI with control charts, emphasizing smart process monitoring. Sections 4 
highlights how AI-driven SQC contributes to sustainability, while Section 5 examines its broader 
strategic value in quality and operational performance. Section 6 addresses the challenges and 
ethical considerations associated with adopting AI in SQC. Finally, Section 7 concludes by outlining 
future research directions and advocating for a more resilient, intelligent and sustainable quality 
management landscape through analytic quality leadership. 
 
2. Repositioning Quality: From Reactive to Real-Time, Predictive and Prescriptive Quality Analytics  

 
SQC has been a foundation of quality management since the early 20th century. Pioneered by 

Walter Shewhart in the 1920s, SQC introduced tools like control charts to monitor process stability 
and reduce variability, laying the groundwork for systematic modern quality improvement [2]. 
Overtime, methodologies such as Six Sigma and TQM extended the influence of SQC’, enabling 
industries to enhance product reliability and operational efficiency. In sectors such as manufacturing 
and automotive, SQC has played a critical role in defect detection and compliance with quality 
standards, fostering customer trust and competitive advantage [4]. 

Traditional quality methods originally developed for industrial manufacturing, are inherently 
static, relying on historical data to monitor processes at fixed intervals. The post-production manual 
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inspections and testing often were time-consuming and ended up with piles of scraps and wastes. 
The proactive Six Sigma and TQM methods were much based on statistical techniques and closely 
aligned with descriptive and diagnostic analytics, which summarized past data and help to identify 
the root cause of defects. Descriptive tools, such as histograms and Pareto charts, identify patterns 
and visualize frequencies of defects, while diagnostic tools like cause-and-effect diagrams and 
Shewhart control charts trace source of process variations defect. Control charts and acceptance 
sampling are typically used to detect quality issues after they occur, making these approaches 
inherently reactive and corrective rather than preventive. While effective in stable, process-focused 
environments, they primarily address internal variables. This retrospective orientation limits their 
usefulness in today’s dynamic, data-rich and customer-driven markets, where business organizations 
must make rapid and informed decisions to remain competitive, responsive to ever-changing 
customer needs, and aligned with evolving regulatory, sustainability expectations due to 
environmental impacts. To remain relevant and competitive, they must adopt adaptive, analytics-
enabled frameworks capable of supporting continuous, real-time responsiveness and sustainable 
performance [5].  

The advent of Industry 4.0 technologies powered by AI has triggered a paradigm shift in quality 
management with the massive flow of real-time data from connected systems, sensors, and digital 
platforms. Whereas the traditional SQC, which was centred on passive monitoring and retrospective 
analysis, is now moving to intelligent, advanced analytics quality management and proactive 
continuous improvement. For example, the advent of Industry powered by AI has triggered a 
paradigm shift that enables real-time data flows supporting automated inspections and predictive 
analytics for enhances accuracy and efficiency [1,6]. AI in quality management introduces advanced 
computational capabilities that enhance the analysis, prediction and optimization of processes 
without explicit programming. Predictive quality analytics used data-driven approaches use data-
driven approaches where machine learning algorithms like random forest and neural networks that 
infers the patterns and anomalies from historical and real-time data. Again, this enables prediction 
on quality problems before they actually occur, even under small sample constraints. The concept of 
predictive maintenance ensures very minimal down time and costs [6]. Table 1 presents the 
differences in reactive, proactive and predictive quality analytics. 
 

Table 1 
Reactive, proactive and predictive approach to quality 
Aspect Reactive Proactive Predictive 
Defect focus Defect has occurred Preventing Defects Predicting defects 
Data use Minimal historical data Moderate use of historical 

data 
Extensive use of historical and 
real-time data 

Tools and techniques Inspection, testing Statistical Process Control Machine Learning. IoT 
Outcome Defect identification Defect prevention Defect prediction and 

avoidance 
Note: Adapted from Bussa, 2022 [6] 

 
With the needs for high efficiency and accuracy, predictive techniques utilize machine learning 

(ML) algorithm trained over structured and unstructured data to unveil hidden patterns and insights 
that might be overlooked by human to detect pattern associated with defects. This would increase 
the speed and precision of the decision-making process. Anomalies recognition methods 
automatically identify trends or irregularities in sensor and production, supporting early intervention 
and root cause analysis are extremely popular in automotive and manufacturing environment [7]. AI 
significantly advances quality analytics through predictive and prescriptive capabilities, moving 
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beyond the descriptive and diagnostic focus of traditional SQC. Predictive analytics leverages AI to 
forecast potential process disruptions. Prescriptive analytics, on the other hand, provides actionable 
recommendations by integrating AI-driven insights with optimization algorithms. For example, AI 
systems can recommend adjustments to production parameters, such as temperature or speed, to 
prevent defects, thereby enhancing efficiency and reducing waste [8]. These capabilities enable 
proactive quality management, contrasting with SQC’s reactive approach of detecting issues post-
occurrence. 

When applied in the context of SQC, these AI-driven approaches fundamentally transform the 
way quality is monitored and managed. Rather than relying solely on historical inspection data or 
control charts, modern systems now integrate real-time analytics to detect quality deviations as they 
happen. In semiconductor manufacturing, for instance, ML models have been used to analyse 
production parameters in real time, has increased the defect detection system's prediction 
accuracies up to 15% [9]. The shifts enhance operational agility, allowing businesses to respond 
swiftly to market changes and customer demands while optimizing resources. 

By repositioning SQC as a dynamic AI-enabled analytical framework, businesses can move beyond 
compliance-based control but towards sustainable, value-driven quality enhancement. This evolution 
shows that modern quality systems are expected to go beyond ensuring processes are stable, but it 
also need to be flexible, data-driven and responsive, and consider the need of people and 
environment. AI-powered SQC significantly improves rate of defective detections and response 
times. AI allows proactive maintenance by predicting machine defects before they happen (AI quality 
control tools, like convolutional neural networks for computer vision inspections) considerably 
strengthen fault identification precision while reducing material scrap [10]. 
 
3. AI-Augmented Control Charts and Smart Process Monitoring  

 
Statistical Process Control (SPC) is one of the most powerful statistical tools to measure, monitor 

and improving products and process quality. Many recent studies gain interest in exploring AI 
adoption in SPC as a novel and more efficient process monitoring tools. AI-Augmented process 
monitoring combines traditional Statistical Process Control (SPC techniques with AI methodologies 
to improve the sensitivity, adaptability and intelligence of quality monitoring systems in 
manufacturing processes [11]. Augmented analytics automates data preparation, insight generation, 
and explanation delivery, empowering a broader range of users to interact with data meaningfully 
without deep technical expertise [12]. Augmented analytics, powered by technologies like machine 
learning, automates data preparation, insight generation, and explanation, empowering users to 
make better decisions faster. Machine learning and deep learning improve the ability to recognize 
pattern and diagnose anomalies in process data especially when dealing with large data-sets.  

Proposed prediction control charts or known as pred charts adopt the behaviour of process 
median can predict continuous process outcomes [13,14]. These charts offer more robust and flexible 
alternative to the traditional SPC tools. Much earlier artificial neural network enables pattern 
recognition in control charts that helps in early fault detection before any effect on quality of 
products are detected [15].  

The traditional time-weighted control charts, such as Exponentially Weighted Moving Average 
(EWMA) and the multivariate version of EWMA (MEWMA), have been foundational to SPC by 
monitoring process stability and detecting deviations [3]. These charts rely on fixed control limits 
derived from historical data. In dynamic data-rich environments where process conditions fluctuate 
rapidly, traditional can be less effective. Traditional control charts fall short because of its static 
control limits resulting in delayed response. The assumption of process stability which are rarely in 
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the real case [16] hinder dynamic monitoring efforts especially in small-batch, high variation 
environment [17]. The integration of AI has transformed the static monitoring tools into adaptive 
systems capable of responding to real-time process variations [18]. Unlike traditional EWMA charts, 
which use static parameters to weigh recent observations, AI-driven models integrate ML based 
techniques such as Random Forest (RF), K-NN, and Support Vector Regression (SVR) to monitor shifts 
in the process mean vector for an adaptive multivariate EWMA control charts to improve small shift 
detection in monitoring industrial process mean vector [19]. Artificial neural network has earlier been 
proposed to improve the performance of monitoring general linear profiles by adjusting the MEWMA 
control chart as a base control chart [11]. 

AI enabled improved accuracy and efficiency of EWMA control charts by adapting to automated 
changing process conditions, optimizing the utilization of auxiliary information, and dynamically 
adjusting sampling intervals based on AI-driven insights. The direction of future developments in AI-
based EWMA control charts could involve the incorporation of big data analytics for improved 
process monitoring, the integration of advanced AI algorithms for real-time decision-making, moving 
towards AI-driven predictive maintenance capabilities. These advancements in SPC entail a promising 
future for augmented AI control charts for even greater advancements in process monitoring and 
optimization. 
 
4. Sustainability through AI-Driven SQC 

 
AI enhances SQC by enabling sustainable practices that align with environmental, economic, and 

social objectives. One key benefit is the reduction of waste through early identification of process 
deviations. Traditional SQC methods, such as control charts, often detect issues after significant 
material losses occur, leading to scrap and rework [3]. In contrast, AI-driven SQC employs machine 
learning algorithms to detect subtle process drifts in real time, minimizing waste. For example, 
anomaly detection models analyse sensor data to detect anomalies in oil well sensor data that enable 
early detection of operational issues that can prevent losses and environmental damage [19].  

Through predictive maintenance and anomaly detection, AI-driven SQC optimizes energy use, 
raw material consumption, and emissions. Predictive maintenance leverages AI to forecast 
equipment failures, scheduling repairs before breakdowns occur, which reduces energy-intensive 
downtime and extends machinery lifespan [20]. For instance, neural networks can predict motor 
failures by analysing vibration patterns, optimizing energy consumption and minimizing unplanned 
stops. Similarly, anomaly detection identifies inefficiencies, such as excessive energy use in 
production lines, enabling corrective actions that could lower emissions. These capabilities align with 
augmented analytics, which integrates predictive insights into operational strategies, fostering 
sustainable decision-making [7]. In summary, AI-infused SQC contributes waste reduction, resource 
optimization and alignment to broader quality and compliance goals, hence long-term sustainability 
and business agility. 
 
5. Strategic Value of AI-Driven SQC 

 
AI-powered SQC offers significant strategic value across industries by elevating quality 

management from reactive, operational tasks to a proactive and intelligent system that supports 
competitive advantages and organisational resilience. At its core, AI-enhanced SQC promotes 
efficiency, accuracy and overall product quality by automating data collection and analysis, reducing 
manual effort and human error. Traditional SQC methods have long focussed on monitoring process 
stability to ensure compliance with quality standards [3], but AL extends this foundation using real 
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time monitoring, predictive analytics, and advanced data processing. Real-time monitoring and 
predictive capabilities allow for continuous process control and optimization. This leads to more 
efficient manufacturing operations, reduced resource consumption, and better response to 
anomalies [21].  

In addition, predictive maintenance enabled by AI can forecast equipment failures before it 
happens, reducing unplanned downtime and extending asset lifespans which is critical for ensuring 
operational continuity [22]. From a quality standpoint, AI-powered SQC contributes to improved 
product consistency by reducing process variability and enabling early detection of potential defects. 
This fosters pre-emptive interventions that reduce scrap and rework [23]. Additionally, AI enhances 
cost efficiency by optimizing raw material use, lowering inspection costs, reducing inefficiencies 
across the value chain. On a strategic level, AI-enhanced SQC enables data-driven decision-making 
that supports long-term competitiveness and agility. Predictive and prescriptive analytics inform rea-
time responses, aligning quality management with broader business objectives like sustainability, 
customer satisfaction and market adaptability [7]. 

Finally, the integration of AI-driven SQC into Enterprise Resource Planning (ERP) and Quality 
Management Systems (QMS) further amplifies its strategic value. AI-enhanced ERP systems help to 
optimize inventory, production schedules and minimizing waste, while AI-enabled QMS platforms 
improve compliance with standards like ISO 9001, streamlining audits and certification processes 
[24].  
 
6. Challenges and Ethical Considerations 

 
The integration of AI into SQC introduces a range of technical and ethical challenges business 

organizations need to address. One of the foremost concerns is safeguarding data quality and 
integration.  AI systems depend on datasets that are clean, structured, and consistent to enable 
accurate prediction and pattern detection, and anomaly detection.  But, for many real-world settings, 
particularly for different departments and units, data may exist in different incompatible formats, 
suffer from inconsistencies, or contain missing data. Such fragmentations can hinder AI models from 
generating coherent insights, impairing their ability to interpret patterns or correctly detect the 
emerging quality issues [25]. Such conditions undermine the effectiveness and reliability of AI-
powered SQC. 

Algorithmic transparency and clarity are another challenge. AI systems often process sensitive 
data, such as customer feedback or proprietary production metrics, raising concerns around bias and 
risks of breaches or misuse [26]. It is important for the AI systems to be transparent, because when 
the decision making is unclear or hidden, it can reduce trust and makes it harder to hold anyone 
accountable. For instance, a lack of clarity in AI-driven defect detection may lead to undetected 
errors, affecting product quality [27]. This leads to broader concerns about bias and fairness. Over-
automation and over-reliance on AI systems may marginalize human expertise, particularly if 
algorithms misinterpret complex conditions thus potentially leading to erroneous quality decisions 
[28]. Moreover, biases in training data can skew quality outcomes, such as prioritizing certain defects 
over others, disproportionately affecting specific product lines or customer segments. In quality 
control, this could mean undetected flaws in production for specific product lines or regions [5]. 

Organizational resistance to AI-based analytics remains a significant barrier. Many business 
organizations face cultural shifts, job displacement fear, lack the skills to operate AI-driven systems, 
leading to cultural and technical barriers [28]. For instance, a quality control team accustomed to 
traditional SQC methods may view AI dashboards as complex and untrustworthy. Involving humans 
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in the decision-making process is important to help manage and reduce these challenges, hence, 
validate AI decisions, correct biases, and ensure ethical compliance [16].  
 
7. Conclusion and Future Research Directions 

 
Ultimately, the success of AI adoption depends not just on technology, but on how well business 

are co-evolving with people, processes, and systems with AI capabilities as such create sustainable 
value [2]. With machine learning, predictive analytics, and real-time monitoring, AI is advancing SQC 
into an intelligent, analytics-powered framework. This shift enables organizations to move beyond 
static control charts toward proactive quality strategies that optimize processes, prevent defects, and 
support environmental and societal goals. As such, AI-powered SQC is emerging as a key enabler of 
sustainable quality enhancement in today’s dynamic business environment. The convergence of AI, 
advanced analytics and SQC redefines quality management as a catalyst for sustainable innovation. 
By integrating machine learning, predictive analytics, and real-time monitoring, AI-driven SQC 
enhances operational efficiency, reduces waste, and improves service quality across industries. From 
manufacturing to service sectors, AI-augmented control charts, predictive maintenance, and 
sentiment analysis dashboards enable proactive quality management, fostering resilience in dynamic 
business environments. These advancements support sustainability by optimizing resource use and 
minimizing environmental impact, as demonstrated by smart factories reducing carbon footprints by 
up to 15% [29]. However, challenges such as data privacy, algorithmic bias, and organizational 
resistance necessitate ethical and adaptive approaches to ensure responsible AI adoption [16]. 

Looking ahead, the future integration of AI-driven SQC requires innovative and inclusive 
strategies to fully harness its potential. First, the adoption of low-code platforms can democratize AI 
quality monitoring, enabling non-technical quality teams to deploy AI tools without extensive coding 
expertise. These platforms simplify the creation of dashboards and predictive models, broadening 
access to advanced analytics. Second, cultivating an AI-literate workforce in quality departments is 
critical. Training programs focused on AI fundamentals and data interpretation can empower 
employees to leverage SQC tools effectively, overcoming resistance to technological change. Third, 
ethical AI frameworks are essential to ensure compliance and trust in quality management systems. 
These frameworks provide a safeguard against issues such as algorithmic bias, enhancing trusts and 
regulatory compliance. As industries continue to explore and adopt AI-SQC at varying paces, the 
evidence points to a transformative potential for quality management. By embracing analytic quality 
leadership where AI capabilities, data-driven insights, and human expertise coverage – organizations 
can hold more resilient, agile and sustainable quality eco-systems equipped to thrive in an 
increasingly dynamic and complex world.  
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