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This study employs the Autoregressive Integrated Moving Average 
(ARIMA) model and the Chow test to identify structural breaks in 
macroeconomic indicators, which are crucial for understanding the 
dynamics of economic systems. By analyzing a dataset of macroeconomic 
indicators, this research aims to detect and model the changes in these 
indicators over time, providing valuable insights for policymakers and 
researchers. Structural breaks, often caused by economic events or policy 
changes, can sometimes significantly impact the accuracy of time series 
models. The presence of structural breaks is tested using the Chow test, 
and the results are compared to those without breaks. The analysis 
focuses on three ARIMA models with different parameters and evaluates 
their performance using root mean squared error (RMSE) and mean 
absolute percentage error (MAPE). The results indicate that the models 
with structural breaks exhibit higher RMSE and MAPE values compared to 
those without breaks. Specifically, the ARIMA (11,0,2) model shows a 
significant increase in RMSE and MAPE when a structural break is 
introduced, while the ARIMA (12,0,4) model exhibits a smaller but still 
noticeable increase. In contrast, the ARIMA (9,1,11) model demonstrates 
relatively better performance with and without structural breaks. The 
results show that traditional ARIMA models provide more accurate 
forecasts than ARIMA models adjusted for data breaks. Incorporating 
structural breaks results in less accurate forecasts. The presence of a 
structural break negatively impacts the forecasting performance of this 
model, leading to larger errors. Our findings suggest that structural breaks 
of minor magnitude in time series data should be disregarded by 
policymakers and economists to improve the reliability of their forecasts. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: 

ARIMA models; structural breaks;  
macroeconomic indicators; Chow test 

 
 
 
 

 
* Corresponding author. 
E-mail address: hanani.harun@umt.edu.my 
 
https://doi.org/10.37934/arbms.40.1.111124 

https://karyailham.com.my/index.php/arbms/index


Journal of Advanced Research in Business and Management Studies 
Volume 40, Issue 1 (2025) 111-124 

 

112 
 

1. Introduction 
 

Macroeconomic indicators forecasting is crucial for understanding and predicting economic 
trends, as it helps a wide range of stakeholders, including governments, corporations, investors, and 
the general public [1]. However, the accuracy of these indicators relies heavily on the ability to model 
and forecast their behavior over time. One common approach to modeling macroeconomic 
indicators is through the use of Autoregressive Integrated Moving Average (ARIMA) models, which 
have been widely used due to their ability to capture complex patterns and trends in time series data 
[2,3].  

While ARIMA models are adept at capturing the nuanced behavior of economic indicators over 
time, they encounter significant challenges when faced with structural breaks—sudden shifts in data 
trends resulting from policy changes, economic shocks, or alterations in data collection methods [4-
6].These structural breaks can distort the predictive accuracy of ARIMA models, leading to inaccurate 
forecasts and poor model fit [7,8]. Given the potential for these breaks to disrupt the stability of 
historical data, it is crucial to understand their impact on forecasting performance.  

Structural breaks refer to sudden and significant changes in the underlying patterns and trends 
of a time series, which can occur due to various factors such as policy changes, economic shocks, or 
changes in data collection methods [4,9]. A data break is recognised to be an irreversible alteration 
in a model's parameter vector and the impact on forecasts is dependent on which model features 
are non-constant [10,11] discover that adding structural breaks enhances our HAR models' 
forecasting performance, particularly for the one-day and one-week forecasting horizons. It has been 
demonstrated that different models and approaches respond differently to breaks. Stock and Watson 
[12] found evidence of structural instability in macroeconomic time series relations, emphasizing the 
need for models that account for breaks. Their work showed that ignoring structural breaks can lead 
to misleading conclusions about economic relationships. Structural changes or "breaks" seem to 
impact models for the evolution in key economic and financial time series which include output 
growth, inflation, exchange rates, interest rates, and stock returns, that could be due to legislative, 
institutional, or technological changes, shifts in economic policy, or even large macroeconomic 
shocks such as the doubling or quadrupling of oil prices over the past decades [13].   

Despite certain model parameters becoming unstable due to structural breaks, the effects on 
forecasting vary depending on the type of break and model type. Data breaks can affect a model in 
several ways, including level, trend, and parameters. Splitting the data accordingly is the best course 
of action when detecting data breaks, considering a global model that includes breaks will not yield 
reliable forecasts for the period after the break. The presence of structural breaks can significantly 
impact the performance of ARIMA models, leading to inaccurate forecasts and poor model fit [7,8]. 
Addressing this challenge, scholars have proposed methods to integrate these breaks into the ARIMA 
models, allowing them to adapt to the evolving data landscape [4,9,14-17].  

However, incorporating structural breaks into ARIMA models is not without its difficulties. The 
process is computationally intensive and may yield suboptimal results [7,8]. Despite these challenges, 
understanding the impact of structural breaks on the forecasting efficacy of ARIMA models is 
essential. To address these concerns, we seek to investigate the impact of structural breaks on the 
forecasting accuracy and to identify the most effective strategy for handling structural breaks in 
macroeconomic time series forecasting. Our study aims to illuminate this impact by scrutinizing 
models both with and without the integration of structural breaks, using evaluation metrics such as 
RMSE (Root Mean Squared Error) and MAPE (Mean Absolute Percentage Error) [18].  

Through a rigorous comparison, we seek to uncover insights into the robustness of ARIMA models 
in the face of structural breaks. By doing so, we hope to enhance the accuracy and reliability of 
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macroeconomic forecasts, providing better tools for policymakers and investors to navigate the 
complexities of economic trends. The research questions and research objectives are aligned as in 
Table1. 
 
Table 1 
Summary of research direction 

Issue  Research Questions  Research Objectives  
Structural breaks in macroeconomic 
time series data can significantly 
impact the performance of ARIMA 
forecasting models  

How do structural breaks affect the 
forecasting accuracy of ARIMA 
models for macroeconomic 
indicators?  

To investigate the impact of 
structural breaks on the forecasting 
accuracy of ARIMA models for 
macroeconomic indicators, using 
evaluation metrics such as RMSE and 
MAPE.  

Traditional ARIMA models may not 
adequately capture the effects of 
structural breaks, leading to 
inaccurate forecasts  

Can incorporating structural breaks 
into ARIMA models improve their 
forecasting performance for 
macroeconomic indicators?  

To compare the forecasting 
performance of ARIMA models with 
and without structural breaks, to 
identify the most effective strategy 
for handling structural breaks in 
macroeconomic time series 
forecasting.  

 
This study is organized into five sections. The first section provides brief background information 

on the study, including the importance of macroeconomic indicators and the challenges posed by 
structural breaks in the data. The second section reviews the prior literature on ARIMA models and 
their applications in forecasting macroeconomic indicators. The third section describes the data used 
in this study, including the selection of macroeconomic indicators and the timeframe for data 
collection. The fourth section explains the research methodology used to investigate the impact of 
structural breaks on the forecasting accuracy of ARIMA models, including the evaluation metrics used 
and the statistical methods employed. The main findings of this part of the study are recorded in 
Section 5. Finally, we conclude in Section 6 by summarizing the key results and implications of the 
study. 

While previous studies have extensively utilized ARIMA models for forecasting macroeconomic 
and financial time series, they often assume data stationarity and continuity without explicitly testing 
for structural breaks [19-21]. The absence of structural break tests in these studies raises concerns 
about forecast reliability, as sudden shifts in economic conditions—due to policy changes, financial 
crises, or external shocks—can significantly impact model accuracy. Additionally, previous analyses 
are largely confined to specific financial datasets, limiting the generalizability of findings to broader 
macroeconomic contexts, and they fall short of providing precise forecasting accuracy for GDP 
growth, inflation rates and unemployment rates at the local level, highlighting gaps in knowledge 
[22-24]. This study addresses these gaps by explicitly incorporating structural break testing into 
ARIMA modeling to improve the reliability of forecasts for Malaysian macroeconomic indicators, such 
as GDP growth, inflation rates, and unemployment rates and extends the application of ARIMA 
models beyond financial datasets to broader macroeconomic contexts, providing localized and 
precise forecasting accuracy metrics that are essential for policymaking and economic planning in 
Malaysia. Hence, this study aims to investigate the impact of structural breaks on the forecasting 
accuracy of ARIMA models for macroeconomic indicators, using evaluation metrics such as RMSE and 
MAPE and  compare the forecasting performance of ARIMA models with and without structural 
breaks, in order  to identify the most effective strategy for handling structural breaks in 
macroeconomic time series forecasting. 
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2. Methodology  
2.1 Data Collection   
   

The study relies on time series data for macroeconomic indicators, including GDP growth rate, 
inflation rate, and unemployment rate, sourced from the World Bank's website. A study by Mohamed 
[25] also utilizes data from the same source and this ensures the analysis is based on dependable and 
relevant data. The selection of macroeconomic indicators and the timeframe for data collection align 
with the forecast's objectives. The study utilises Malaysia's annual percentage of GDP growth rate, 
inflation rate and unemployment rate as the macroeconomic indicators for twenty years, starting in 
2002, and ending in 2022. 

The growth in GDP can be represented as a country’s economy strength which almost every 
nation in the globe aims to expand their income base [26]. A nation's capacity to expand its income 
base is reflected in GDP growth, which is the main indicator of economic progress. In this regard, a 
crucial sign of price stability is the inflation rate. Deflation can be an indication of economic struggle, 
whereas high inflation can reduce buying power. Policymakers must analyse inflation patterns in 
order to carry out the right monetary actions. The unemployment rate is a reflection of both 
economic health and labour market circumstances. Whereas falling unemployment indicates labour 
market improvement and economic progress, increasing unemployment frequently indicates 
economic downturns. 

   
2.2 Box - Jenkins Methodology  
   

The Box-Jenkins methodology, developed by George Box and Gwilym Jenkins, is an integrated 
approach to ARIMA models, which gained popularity in the 1970s due to their ability to outperform 
large and complex econometric models. The ARIMA model, which does not include any additional 
independent variables, is used in business and finance to anticipate future quantities or pricing based 
on previous data. To be credible, the data must be reliable and collected over a significant span. 
ARIMA models use differencing to convert a non-stationary time series into a stationary one, which 
is then used to forecast future values. They also use "auto" correlations and moving averages over 
residual errors in the data to forecast future values.  

ARIMA models are a statistical approach used to analyze historical data and identify patterns. 
They consist of three parts: the "AR" or autoregressive component, which accounts for patterns 
between periods, and the "MA" or moving average component, which shows how new forecasts 
adapt to previous forecast errors. The letter "I" denotes a trend or other "integrative" process in the 
data. The AR and MA components each include a model order that indicates the duration or 
persistence of a pattern, affecting the present value of the data by prior values (lags). For example, 
an AR1 reveals a carryover pattern from one time period to the next, while an MA1 links current sales 
to last month's forecasting inaccuracy. Nonseasonal Box-Jenkins models are represented as 
ARIMA(p,d,q), where "p" represents the number of the AR term, "q" is the number of the MA term, 
and "d" denotes the number of times the data needs to be differenced to de-trend or contribute to 
ARIMA modelling. Seasonal Box-Jenkins models are represented as ARIMA(p,d,q)*(P, D, Q), where 
p,d,q represents the model orders for the model's short-term components and P, D, Q represents 
the model orders for the model's seasonal components. For instance, an ARIMA(1, 1, 1) model 
includes an AR(1) component for autoregression, a differencing term (d=1) for stationarity, and an 
MA(1) component for moving average effects on forecast errors. Incorporating seasonality, such as 
ARIMA(1, 1, 1)(1, 1, 1), extends this to include both nonseasonal and seasonal components, 
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addressing cyclic patterns that occur at fixed intervals. Mathematically and AR(p) model can be 
expressed as follows:  

 
ŷ! = 𝑐 + ∅"𝑦!#" + ∅$𝑦!#$ +⋯+ ∅%𝑦!#% + 𝜖!  (1) 

 
  

ŷ! and 𝜖! are the actual value and the error terms at time period 𝑡, ∅&(𝑖 = 1,2,3 .... ) are model 
parameters and c is a constant. Integer p is known as the order of the model. A stationary time series 
has properties that are independent of observation time. Until the original series becomes stationary, 
the difference is taken d times. In general, a 𝑑th-order difference can be expressed as:  
  
𝑦′! = (1 − 𝐵)'𝑦! (2) 

  
𝐵 is the backshift operator while 𝑑 is the degree of differencing.   

  
On the contrary of AR(p) model, an MA(q) model uses past errors as explanatory variables. The 

MA(q) model is given below:  
 

ŷ′! = 𝑐 + ∅"𝑦′!#" +⋯+∅%𝑦(!#% + 𝜃"𝜖!#" +⋯+ 𝜃)𝜖!#) + 𝜖! (3) 
 
2.3 Chow Test Methodology  
 

A structural break in the data of macroeconomic indicators is evaluated after forecasting and 
obtaining a suitable model. A data break occurs when a time series suddenly changes at a certain 
point in time, either in the mean or other parameters of the process. Structural break tests help 
determine when and if there is a significant shift in the data, which can lead to severe forecasting 
errors and model unreliability. The Chow test was used in this study to detect data breaks, which is 
part of the ARIMA model. Assume 𝑆* is the total of squared residuals from the combined data, 𝑆" is 
the sum of squared residuals from the first group and 𝑆$ is the sum of squared residuals from the 
second group. 𝑁" and 𝑁$ and are the number of observations in each group and 𝑘 is the total number 
of parameters. Thus, the Chow test statistic can be written as below: 
 

𝐹 =
(𝑆* − (𝑆" + 𝑆$))(𝑁" + 𝑁$ − 2𝑘)

𝑘(𝑆" + 𝑆$)
 (4) 

 
A higher F-value suggests a structural break. If the computed F-statistic exceeds the critical value 

from the F-distribution, it indicates a significant difference between the two sub-periods, confirming 
the presence of a break. This is crucial in time series analysis, as ignoring structural breaks can lead 
to inaccurate forecasting and misleading inferences. By identifying these breaks, researchers and 
policymakers can adjust their models accordingly to improve accuracy and reliability in 
macroeconomic forecasting. 
   
2.4 ARIMA Modelling Steps  
   

1. Identify the model: The Augmented Dickey-Fuller (ADF) test is a statistical method used to 
determine the stationary state of a time series. This test is commonly used in autoregressive 
modelling to improve prediction accuracy. It is also a statistical significance test that calculates 



Journal of Advanced Research in Business and Management Studies 
Volume 40, Issue 1 (2025) 111-124 

 

116 
 

a test statistic and presents p-values after a hypothesis test, including a null and alternate 
hypothesis. The time series yields a d-value, from which it is inferred whether it is stationary 
or not. In this study, EViews applications will be used to ascertain the data's stationary state. 
This test is crucial for developing accurate time series analysis forecasting models. The 
following two hypotheses will be examined:  

2. Estimate the model: The autocorrelation function (ACF) and partial autocorrelation function 
(PACF) can be used to estimate the values of p and q in the ARIMA model. These functions 
help understand time series data behaviour, determine Moving Average (MA) and 
Autoregressive (AR) lag numbers, and identify seasonality. Proper application and 
interpretation are crucial for extracting meaningful information from ACF and PACF plots. 
Both original data and residuals can be used to construct ACF and PACF graphs, identifying 
autoregressive or moving average terms, residual autocorrelation, and seasonal behaviour. 
The ACF and PACF can also estimate smoothness conditions, with a stationary series being AR 
if the autocorrelation decays towards zero in the AC plot, the PACF plot rapidly cuts off 
towards zero, and the ACF shows positive at lag-1. If the series' ACF and PACF results are the 
same, the model is an ARIMA model rather than a solely AR or MA model.  

3. Test the data break: The Chow test is a statistical method used to determine the correlation 
between two regression models' coefficients. It was created in 1960 by Chinese-American 
economist Gregory Chi-Chong Chow and is used to detect structural breaks in data points. 
The test checks if there are similarities or differences in coefficients after a break and if they 
differ, the null hypothesis is that there is no structural break. The test assumes equal linear 
regression lines with the same independent and dependent variables, independent residuals, 
and unknown variance. However, it has limitations, such as only being applied in cases when 
the time series is available and only for regression models. In this study, the Chow test is used 
to examine the future of data breaks in GDP growth, inflation, and unemployment in Wuhan, 
China, due to the COVID-19 crisis. The test cannot determine which coefficient, slope, or 
intercept differs between the two models.  
 

Null hypothesis, 𝐻+ : There is no structural break existed  
Alternative hypothesis, 𝐻, : There is a structural break existed  

 
If the outcomes reveal that the null hypothesis can be rejected, we can conclude that a 
structural break exists. As a result, we are ready to define the best ARIMA model with a data 
break.  

4. Determine the best ARIMA model: The data break in 2020 will be used to convert non-
stationary forecasted data into a stationary time series using ACF and PACF. The model will 
be verified using macroeconomic indicators data using the ADF unit root test. The optimal 
ARIMA model should have a significant number of Adjusted 𝑅$ and a small number of Akaike 
Info Criterion, Schwarz Info Criterion, and Hannan-Quinn Info Criterion. The chosen model 
will be estimated, and the ARMA process will be stationary if there is no significant spike of 
ACFs and PACFs, indicating white noise residual.  

5. Forecast: Prediction accuracy is crucial in forecasting as it measures the accuracy of a forecast 
compared to the actual result. RMSE is a popular measure used to gauge prediction accuracy, 
evaluate the average magnitude of predicted errors, and weigh both positive and negative 
deviations from actual values. It provides information on the concentration of data around 
the line of best fit, making it useful for calculating forecast accuracy. MAPE, or the mean of 
absolute percentage errors for each item in a dataset, measures how accurately predicted 
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values compare to actual values. A MAPE value below 10% indicates excellent forecasting 
accuracy, while a lower RMSE value indicates a closer match between predicted and actual 
data. RMSE provides a measure of absolute error magnitude, while MAPE provides a measure 
of relative error magnitude. Using both metrics ensures a balanced evaluation of the model's 
performance. Hence, RMSE and MAPE are the best fit as evaluation metrics for ARIMA models 
with the Chow Test because they quantify the impact of structural breaks on forecasting 
accuracy, provide complementary insights into absolute and relative errors, and enable with 
and without data break performance analysis. Equations (5) and (6) provide formulas for 
RMSE and MAPE, respectively, whereas ŷ", ŷ$, …	 , ŷ-	 are the predicted values, 
𝑦", 𝑦$, …	 , 𝑦-are the observed values and 𝑛 is the number of observations. 
 

𝑅𝑀𝑆𝐸 = @A
(ŷ& − 𝑦&)$

𝑛

-

&."

 

(5) 

𝑀𝐴𝑃𝐸 =
∑ E(ŷ& − 𝑦&)

$

𝑛 E-
&." × 100

𝑛  

(6) 

   
2.5 Limitations  

  
The ARIMA model faces limitations due to the manual specification of model parameters, 

requiring multiple trials and modifications to find the optimal configuration. The model's reliability 
and accuracy depend on the reliability and differencing of historical data, which must be collected 
accurately and over a long period for accurate results and forecasts. Additionally, the study assumes 
that the data is stationary and that the structural breaks are correctly identified.  
 
3. Results  
 

Figures 1 through 6 display the graphs of forecasting results with and without considering data 
breaks using the optimal models selected.  

 

   
Fig. 1. Graph of Forecasting Result 
using ARIMA (11,0,2) Model 
without data break 

Fig. 2. Graph of Forecasting Result 
using ARIMA (12,0,4) Model 
without data break 

Fig. 3. Graph of Forecasting Result 
using ARIMA (9,1,11) Model 
without data break 
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Fig. 4. Graph of Forecasting Result 
using ARIMA (11,0,2) Model with 
data break 

Fig. 5. Graph of Forecasting Result 
using ARIMA (12,0,4) Model with 
data break 

Fig. 6. Graph of Forecasting Result 
using ARIMA (9,1,11) Model with 
data break 

  
The analysis of the forecasting results for Malaysian macroeconomic indicators, specifically 

considering structural breaks, provides significant insights into the performance and accuracy of 
different ARIMA models. Figures 1 through 6 illustrate how the forecasting results vary with and 
without considering data breaks using optimal ARIMA models. Each selected ARIMA model has been 
validated and meets all necessary ARIMA criteria which the optimal ARIMA models are chosen based 
on the highest adjusted 𝑅$value and the lowest values of the AIC, SIC and HQIC. 

For GDP forecasting, The ARIMA (11,0,2) model was identified as the most effective and the 
selection of this model indicates that GDP growth rates are best predicted by a combination of recent 
and older observations, with no need for differencing to achieve stationarity. Meanwhile as for 
inflation forecasting, The ARIMA (12,0,4) model emerged as the best fit and the model suggests that 
inflation rates are influenced by a longer history of past values and error terms. The ARIMA (9,1,11) 
model was chosen for unemployment rate predictions. The inclusion of differencing indicates that 
the unemployment rate data needed to be transformed to achieve stationarity, reflecting potential 
trends or seasonal effects.  

When structural breaks are not considered, as seen in Figures 1 through 3, the ARIMA models 
(11,0,2) for GDP, (12,0,4) for inflation, and (9,1,11) for unemployment forecast trends with moderate 
fluctuations. However, these models may miss abrupt changes due to economic shocks or policy 
changes. Specifically, the GDP forecast in Figure 1 shows a steady trend with slight variations, the 
inflation forecast in Figure 2 maintains a stable trend, and the unemployment forecast in Figure 3 
indicates a slight upward trend. Yet, these forecasts potentially underestimate or miss significant 
shifts because they do not account for structural breaks.  

Conversely, Figures 4 through 6, which incorporate data breaks, demonstrate more accurate and 
responsive forecasts. The GDP forecast in Figure 4 using the ARIMA (11,0,2) model reflects more 
significant changes, effectively capturing external shocks or policy adjustments. Similarly, the 
inflation forecast in Figure 5 with the ARIMA (12,0,4) model shows a smoother and more precise 
trend, adjusting for sudden changes and enhancing the model's reliability. The unemployment 
forecast in Figure 6 using the ARIMA (9,1,11) model also shows improved accuracy, considering 
structural shifts and aligning better with actual economic conditions.  

Table 2 further supports these observations by summarizing the evaluation results of both with 
and without data breaks for each indicator, displaying the RMSE (Root Mean Squared Error) and 
MAPE (Mean Absolute Percentage Error) values. Despite the expectation of higher MAPE values due 
to its bias towards penalizing negative errors more than positive ones, both forecast evaluations 
consistently show low RMSE values, indicating a high degree of accuracy across different conditions.  

The ARIMA (11,0,2) model exhibits a significant increase in RMSE and MAPE when a structural 
break is introduced, highlighting its sensitivity to structural breaks and the negative impact on 
forecasting performance. This model's larger errors in the presence of a break suggest that it is less 
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robust in handling such disruptions. In contrast, the ARIMA (12,0,4) model shows a smaller but 
noticeable increase in RMSE and MAPE, indicating a better but still imperfect robustness to structural 
breaks compared to the ARIMA (11,0,2) model. The ARIMA (9,1,11) model demonstrates relatively 
stable performance with and without structural breaks, implying that it handles structural breaks 
better than the other two models. The first-order differencing in this model likely contributes to its 
improved performance in the presence of structural breaks.  

Interestingly, the results indicate that traditional ARIMA models provide more accurate forecasts 
than those adjusted for data breaks. This could be because ARIMA models without structural breaks 
are better at capturing underlying patterns and trends in the data, even with a break. Adjusting for 
structural breaks might introduce additional complexity and noise, leading to less accurate forecasts. 
This observation is supported by Aser and Firuzan [8].  

In summary, the results highlight the varying sensitivity of different ARIMA models to structural 
breaks and emphasize the importance of considering model selection and robustness when dealing 
with time series data that may contain structural changes. Incorporating structural breaks into 
forecasting models can improve accuracy, but it is crucial to balance the complexity introduced by 
these adjustments against the potential benefits.  
   

Table 2 
Comparison of forecast evaluation values between without data break and with data break   

ARIMA Models Forecast Evaluation Without Data Break Forecast Evaluation With Data Break 
 RMSE MAPE (%) RMSE MAPE (%) 
ARIMA (11,0,2) 2.480431 34.47288 3.891173 64.90473 
ARIMA (12,0,4) 1.075697 66.98504 1.147001 65.88108 
ARIMA (9,1,11) 0.429509 7.906053 0.522855 10.60105 

  
Figures 7 to Figure 9 illustrate the comparison between the actual and predicted values of the 

GDP growth rate, the inflation growth rate and the unemployment growth rate, respectively. The 
results indicate that the forecasted values for each indicator closely align with their actual values on 
the graphs. The provided figures illustrate the forecasting results for three key Malaysian 
macroeconomic indicators: GDP, inflation, and unemployment rates. The blue lines represent the 
actual historical data, while the orange lines depict the forecasted values generated by the ARIMA 
models.  

In the Figure 7, the actual GDP rate shows considerable fluctuations over the years, with notable 
declines around the 2008 financial crisis and the sharp drop in 2020 due to the COVID-19 pandemic. 
The forecasted GDP values, however, appear smoother and less reactive to these abrupt changes. 
The ARIMA model used for forecasting seems to capture the general trend but fails to reflect the 
severity of the downturns and subsequent recoveries accurately. This inconsistency stresses the 
challenge ARIMA models face when structural breaks, like economic crises, disrupt the historical 
patterns used for forecasting.  
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Fig. 7. Graph of the actual and forecasted rates for GDP 

 
Figure 8 displays the inflation rate, which also exhibits significant variability, particularly around 

the 2008 crisis and the post-2015 period. The forecasted inflation values follow the general trend of 
the actual data but show a noticeable lag in capturing the sharp declines and spikes. This lag suggests 
that the ARIMA model can track gradual changes in the inflation rate but struggles with sudden 
structural breaks. The model's forecast smoothens the peaks and troughs, indicating a potential 
underestimation of volatility in periods of economic stress.  

  

  
Fig. 8. Graph of the actual and forecasted rates for inflation 

 
Figure 9 presents the unemployment rate, which, like the other indicators, shows variability over 

time, particularly with a sharp increase around 2020 due to the pandemic. The forecasted 
unemployment rates are relatively stable and fail to capture the sharp rise accurately. The ARIMA 
model's forecast tends to underpredict the actual unemployment spikes, highlighting its limitation in 
adapting to sudden structural changes in the labor market.  
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Fig. 9. Graph of the actual and forecasted rates for unemployment 

  
The analysis of these figures reveals that while ARIMA models can reasonably forecast the general 

trends of macroeconomic indicators, they fall short in periods marked by structural breaks. The 
models' inherent assumption of a stable, linear progression in the time series data limits their ability 
to account for sudden, significant shifts caused by external shocks or policy changes. This limitation 
is evident in the smoother forecasted lines that fail to capture the abrupt changes in the actual data 
accurately.  

These observations emphasize the importance of incorporating mechanisms to detect and adjust 
for structural breaks within forecasting models. By doing so, the accuracy and reliability of 
macroeconomic forecasts could be significantly improved, providing better tools for policymakers 
and investors to anticipate and respond to economic changes.  
 
4. Conclusions 
 

This study aimed to investigate the impact of structural breaks on the performance of ARIMA 
models in forecasting macroeconomic indicators. The results show that traditional ARIMA models 
provide more accurate forecasts than ARIMA models adjusted for data breaks, indicating that the 
presence of structural breaks can negatively impact the forecasting performance of these models. 
The study highlights the importance of considering structural breaks in ARIMA models, particularly 
in the context of macroeconomic indicators. The results suggest that the ARIMA (11,0,2) model is 
highly sensitive to structural breaks, while the ARIMA (9,1,11) model is more robust and can handle 
structural breaks better. The findings indicate that when comparing traditional ARIMA models to 
those adjusted for data breaks, the former tends to yield more precise forecasts. This is due to, when 
structural breaks are incorporated, forecast accuracy diminishes. Clements and Hendry [27] argued 
that forecast failures in ARIMA models stem from their reliance on historical data patterns, which 
structural breaks disrupt. They emphasized that models need to account for these shifts to improve 
accuracy. However, this study's findings suggest that incorporating structural breaks into ARIMA 
models does not necessarily improve forecasts but can, in fact, reduce accuracy. This contradicts Luo 
and Huang [28], who found that integrating break detection techniques enhances forecasting 
precision, particularly in financial time series.  

The study's findings have significant implications for policymakers and investors who rely on 
accurate forecasts of macroeconomic indicators to make informed decisions. The results emphasize 
the need for careful consideration of structural breaks in ARIMA models and the importance of using 
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robust models that can adapt to changes in the data over time. This suggests that policymakers and 
economists aiming to enhance the reliability of their forecasts should overlook minor structural 
breaks in time series data. Many macroeconomic and financial time series exhibit structural breaks, 
yet these breaks do not significantly impact forecasts [12]. The potential gains of accounting for 
structural breaks might be negated by the challenges of accurately estimating the timing and 
characteristics of these breaks. Choosing to disregard a small break instead of incorporating it into 
the model may result in more precise forecasts [29]. For policymakers, the findings suggest that 
adjusting ARIMA models for every structural break may lead to reduced forecast accuracy, making 
traditional models a more reliable tool for economic planning and policy formulation. Investors who 
overly compensate for structural breaks may risk making suboptimal financial decisions, as excessive 
model adjustments can introduce greater uncertainty in forecasting outcomes. A comprehensive 
approach that acknowledges significant structural shifts while maintaining model stability is essential 
for improving the reliability of economic forecasts, ultimately supporting more informed decision-
making in both policy and investment strategies. 

Future research directions include exploring alternative methods for handling structural breaks 
in ARIMA models, such as using machine learning algorithms or incorporating additional data 
sources. According to a research by Aser [7], the artificial neural network model performs better than 
any other competing model when there is a structural break, particularly when the break sizes are 
high and the horizons are long. In contrast, the ARIMA-ARCH model performs best when there is no 
structural break. Additionally, further research can investigate the impact of structural breaks on 
other types of time series models, such as exponential smoothing or machine learning models. One 
promising alternative is the Vector Autoregression (VAR) model, which extends ARIMA by 
incorporating multiple interdependent time series. VAR captures the dynamic relationships between 
multiple macroeconomic indicators, and this is particularly useful in the presence of structural 
breaks, as economic shocks often propagate through multiple variables rather than affecting a single 
series in isolation. Future research could explore non-Gaussian innovations, additional predictors, 
and vector autoregressive processes [29]. Another valuable approach is the Generalized 
Autoregressive Conditional Heteroskedasticity (GARCH) model, which is particularly effective in 
modeling financial and macroeconomic data characterized by volatility clustering. GARCH models 
explicitly account for time-varying volatility, making them well-suited for handling structural breaks 
associated with financial crises or periods of economic instability. When structural breaks cause 
abrupt changes in market volatility, GARCH models dynamically adjust their variance estimates, 
improving predictive performance for financial time series. Overall, this study contributes to the 
ongoing debate about the effectiveness of ARIMA models in forecasting macroeconomic indicators 
and highlights the importance of considering structural breaks in these models. 
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