

Journal of Advanced Research in Computing and Applications 39, Issue 1 (2025) 164-180

164

Journal of Advanced Research in Computing
and Applications

Journal homepage:
https://karyailham.com.my/index.php/arca

ISSN: 2462-1927

Automated Unit Testing Practice Based on The Embedded Software
Development Platform

 Yingbei Niu1,2,*, Soo See Chai1, Kok Luong Goh3, Kim On Chin4

1 Faculty of Computer Science and Information Technology Universiti Malaysia Sarawak (UNIMAS) 94300 Kota Samarahan Sarawak, Malaysia
2 Faculty of Education, Xi'an Jiaotong University, 710048 Xi'an, China
3 Faculty of Computing and Software Engineering, i-CATS University College, Jalan Stampin Timur, 93350 Kuching, Sarawak, Malaysia
4 Faculty of Computing & Informatics, University Malaysia Sabah, Kota Kinabalu, 88400, Malaysia

ARTICLE INFO ABSTRACT

Article history:
Received 29 June 2025
Received in revised form 8 August 2025
Accepted 25 August 2025
Available online 4 September 2025

Embedded software plays an essential role in modern technological systems, where
quality and reliability are critical. However, traditional testing methods often face
significant challenges in efficiency and coverage, creating a demand for more effective
and comprehensive testing strategies. This study aims to explore automated testing
within embedded software development, focusing on its advantages, methodologies,
and impact on software quality. An experimental approach was adopted using
automated unit testing tools to validate testing performance. The process covered
functional, interface, user interface, and performance aspects. The results demonstrate
that automated testing enables faster issue detection, improves precision, and
enhances testing efficiency. Broad test coverage is achievable through well-structured
automated unit testing, supported by best practices such as careful tool selection, clear
and concise test scripting, early and continuous testing, and active stakeholder
collaboration. Automated testing therefore offers a practical and efficient solution to
improve software quality in embedded systems. Future research should examine the
integration of automated and manual testing, security testing for embedded
applications, and the application of machine learning and artificial intelligence to
enhance testing capabilities.

Keywords:
Automated test; test strategy; defect
management; test coverage

1. Introduction

Embedded software is fundamental to modern technology and industry, underpinning systems

ranging from smartphones to automotive controls and medical devices [1]. However, the escalating
complexity of embedded software presents significant challenges for ensuring its quality and
reliability, making effective software testing critically important [2]. Traditional manual testing
methods often suffer from inefficiency, limited coverage, and difficulties in handling intricate
scenarios such as endurance tests requiring uninterrupted long-duration execution or precise timed
operations where manual precision is inadequate [3]. Consequently, automated testing has gained

* Corresponding author.
E-mail address: 2010175@siswa.unimas.my

https://doi.org/10.37934/arca.39.1.164180

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 164-180

165

prominence within embedded software development as a means to enhance testing efficiency,
reduce manual effort, and ultimately ensure software quality. The integration of automated testing
practices within embedded software development platforms offers a crucial solution, providing
developers with precise and efficient testing capabilities [4,5]. Key advantages of automated testing
include improved efficiency, particularly for special scenarios and repetitive tasks; increased test
coverage enabling thorough examination of code; earlier defect detection lowering risks; and
strengthened developer confidence in software quality [13-15].

This paper introduces and explores automated testing practices specifically founded on an
embedded software development platform. We begin by examining the significance of automated
testing in the embedded software domain and critically assessing the limitations inherent in
traditional manual approaches. Subsequently, we elucidate the methodologies for automated testing
enabled by the development platform, encompassing key phases such as test case creation,
execution, and result analysis. Integrating these automated processes seamlessly into the
development workflow allows for swift and efficient testing during iterative development cycles [6].
Automated testing is applicable across various types and levels within the software lifecycle.
Depending on the phase and object, functional automation testing verifies stable core features [16],
automatic interface testing focuses on component port requests and responses [17], UI automation
testing assesses relatively stable graphical interfaces and workflows [18], and automatic performance
testing handles tasks like daily scenario execution and anomaly analysis [19–22]. At different test
levels, unit testing automates verification of individual code units or components [23,24],
configuration item testing examines the complete application flow including user interaction [25],
and system testing validates overall user requirement fulfilment [25].

Prior research underscores the critical role of automated testing in assuring software quality and
boosting development efficiency, particularly as embedded systems proliferate in safety-critical
fields like aerospace and medical devices where stability and reliability are paramount [7,8]. Various
approaches have been investigated, including platform-specific tool integration (e.g., using
Testbed/Tbrun within the Tornado environment) for automating unit testing [9], comparative
reviews of testing tools to aid selection [10], and model-driven techniques for automatic test case
generation addressing embedded system needs [11]. However, existing studies often exhibit
limitations. Some focus narrowly on specific tools or methods without providing a holistic view across
multiple approaches [12], while others lack in-depth comparative analysis of manual versus
automated testing effectiveness in practical, real-world embedded development scenarios [13].

Addressing these gaps, this paper focuses on the practical application of automated unit test case
generation within the embedded platform context, as unit testing forms the bedrock of software
verification. Automating the generation of high-coverage unit test cases with robust detection
capabilities is essential for efficiently validating whether embedded software modules meet their
expected functionality and logic [23,24]. Leveraging the tools and technologies inherent in the
embedded software development platform, we investigate methods to achieve this automation
effectively. Therefore, the central research question guiding this study is: How can efficient and
effective automated testing, particularly unit testing across multi-modular code, be achieved on
embedded platforms to enhance software quality and accelerate development?

The primary aim of this study is to explore the efficacy and viability of these platform-based
automated testing practices. We validate these practices through concrete application, with a
specific emphasis on the automated generation of unit test cases. Furthermore, we analyze the
impact of such automation on software quality, testing efficiency, and development timelines within
embedded software projects. Best practices for successful implementation, such as selecting
appropriate tools, writing clear test cases, early and frequent automation, versioning support, and

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 164-180

166

incorporating user feedback [26-30], inform our approach. Given the relative scarcity of
comprehensive research on automated testing integrated within embedded development
platforms—especially concerning its multifaceted impacts throughout the development lifecycle—this
work seeks to provide profound insights. The findings are expected to benefit embedded software
developers by elevating testing quality and efficiency, reducing costs, expediting project delivery, and
strengthening competitiveness. Ultimately, this research contributes to the broader goal of
advancing technology to foster safer and more dependable embedded software products.

2. Methodology

An embedded software development platform is an information system with unified technical
architecture, modularity, and integrated and distributed characteristics. Relying on demand
management, the platform provides project management, test management, defect management,
configuration management, pipeline management, RESEARCH and development efficiency and
performance management, and basic support capabilities, and integrates and integrates professional
construction, deployment, analysis, testing, and other tools, providing an effective support platform
for software R & D management and control. In embedded software development, the automation
test environment has the following important features and applicability:

i. Complexity of embedded systems: Embedded systems often contain a large amount of code

and complex interactive relationships. With an automated test environment, one can automate
large-scale test cases and capture possible errors and flaws. This helps improve test coverage
and the ability to detect potential problems.

ii. Specific hardware and environment requirements: Embedded systems usually operate on
specific hardware platforms and environments. The automated testing environment can
simulate these hardware and environments and test for specific requirements. For example,
sensor inputs, external interfaces, and real-time requirements can be simulated to ensure the
stability and reliability of embedded code in an actual operating environment.

iii. Performance and security-oriented: Embedded systems often have high requirements for
performance and security. The automated testing environment can evaluate the performance
of embedded code in these aspects by simulating load, concurrency, and security attacks. This
helps to identify and solve performance and safety issues in advance, reducing risks and costs
later.

iv. Integration with the configuration management library: The integration of the automated test
environment and the configuration management library can realize the automatic code
extraction and update. After the developer submits the code, the environment can
automatically extract the latest code from the configuration management library and execute
the corresponding test cases. This integration performance ensures that the code used in the
test environment is consistent with the code submitted by the developer, avoiding problems
caused by version inconsistency.

Automated testing environment has important applicability in embedded code testing. It

automates tests on the complexity of embedded systems, specific hardware and environment
requirements, performance, and security, and integrates with the configuration management library
to improve test efficiency and quality. Further research and practice can further explore and optimize
the application of automated testing environments in embedded software development.

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 164-180

167

An automated testing framework based on an embedded software development platform can do
the following:

The platform is associated with Klocwork, EvoSuite, and other automated test tools, which can
choose one of them according to the needs, and then build an automated test environment suitable
for embedded code based on the selected test tools. This environment can provide the settings and
configurations necessary to ensure that the test tool can properly analyze and test the code.

 The adaptability and precision of the code extraction from the configuration management library
can be analyzed in-depth. First, the structure and organization of the configuration management
library need to be considered to ensure that the required code segments can be accurately extracted.
Second, it is necessary to ensure that the extracted version of the code is consistent with the version
submitted by the developer, to avoid inconsistencies or errors. This can be achieved through the
mechanism of versioning and code synchronization, ensuring that the environment has access to the
latest code.

After the software developer completes the coding and submits it, the automatically extracts the
corresponding code from the configuration management library and enters it into the automated
test environment for testing. The key point here is the development of the predefined test rules. The
predefined test rules should take into account the characteristics and requirements of the system-
level code and the embedded code, including conditional branches, operators, judgment statements,
etc. The rules should be complete, cover all aspects of possible problems, and can accurately detect
potential defects.

 The following can be considered when analyzing defect discovery capabilities and strengths of
predefined test rules. First, the rules should be able to capture common coding errors and potential
problems, such as null pointer references, boundary condition errors, etc. Second, the rules should
be accurate and accurate to detect problems as early as possible stages to avoid more serious effects
in the subsequent stages. Furthermore, the rules should be designed to incorporate the specific
needs and domain knowledge of the project to ensure their applicability and validity in practical
testing.

Through test management, details of use case execution and test reports can be viewed. This
includes executed test cases, test results, defects found, etc. Testing management tools allow easy
tracking and management of each link in the test process, providing the function of submitting
defects to the project or iteration with one click. This can accelerate the speed of defect repair and
improve the response efficiency of the development team.

The platform shall automatically record all automated test activities, test data, and test results
for the coding quality of the statistical analysis software development users. This includes the
generated test cases, coverage reports, defect information, etc. Through the analysis of these
records, developers can evaluate the quality of coding, find common problem patterns and trends,
and take corresponding measures to improve and optimize.

In conclusion, the adaptability and accuracy of the code extraction in the analysis from the
configuration management database, as well as the integrity of the predefined test rules and the
ability to find defects, is of great significance for establishing an effective automated test
environment and improving test efficiency. At the same time, test management and statistical
analysis can better manage the test process and evaluate the quality of coding, to improve the quality
and efficiency of software development.

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 164-180

168

2.1 Automated Test Business Scenarios

The automated test based on the embedded software development platform calls the automated
test service provided in the pipeline to directly submit and track defects, defect associated
configuration versions; the test case script is automatically executed and calls the automated test
service provided in the pipeline to automate the test of test components in the test environment
[26,27], Figure 1 is the automated test business scenario.

Fig. 1. Automatic test business scenario diagram

2.2 Automated Testing and Defect Management Process

Automatic test and defect management functions can cover the complete test management

process, support the association between test cases and requirements and tasks, and form the
association between test plans and iteration, forming a closed loop of the test process, improving
test efficiency, and ensuring delivery quality. Figure 2 is a schematic diagram of the internal
information relationship between automated testing and defect management:

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 164-180

169

Fig. 2. Schematic diagram of the internal
information relationship between automated
test and defect management

The automated test case library can customize the use case attributes, adapt to different business
scenarios, and support the use cases associated with product requirements and research and
development tasks. The use case source and daily test process extracted from the test case library
compiles the test scripts that have been successfully reused into the test case library and then reused
by other projects. Test cases entered into the test case database will be related to the software
requirements and software defects, which can easily be reused according to the software
requirements, and can easily track and analyse software defects.

The software defects database automatically enters the software defects found in the automated
test process after the test execution and conducts test data statistical analysis, including software
defect classification and classification, and statistical analysis of test data to reflect the software
coding quality and software product quality in real-time; the software defect report form is
automatically generated after analysis, and the software defects can be assigned to corresponding
developers for viewing, processing and forwarding. The test function matrix is shown in Table 1.

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 164-180

170

Table 1
Test the functional matrix
Order
number

Functional steps Task decomposition Output products

1 Organize and
manage the use
case library

1) Build a use case library according to the
requirements
2) Write test cases or select use cases in
the use case library

Use case information

2 Organize and
manage the defect
library

1) Automatic collect defect results
2) Automatic analysis and display

Defective information

3 Automate test
requirements
analysis

1) Automatic test requirements analysis
according to the software requirements
2) Establish a tracking matrix of test
requirements and software requirements

Demand tracking
matrix

4 Develop an
automated test
plan

1) Develop the test resource plan and
schedule plan

Test plan, including the
sequence of automated test
execution for each function

5 Automated test
case design and
execution

1) Create the test cases
2) The platform automatically performs
the test case script
3) Return the test results

Test cases and execution
records

6 Generate the test
report

1) The platform automatically arranges
and analyzes the test data, evaluates the
test effect and the tested software items
2) Generate software test reports and
other related testing documents.

Test report, including defect
diagnosis, code coverage
results

7 regression testing Impact domain analysis of defective
functions or modules, and the test case is
performed again after defect repair

Impact domain analysis
report and regression test
report

 Based on the software requirements, analyze the automated test requirements, judge the test

requirements, determine the content or quality characteristics of the automated test, and build the
tracking matrix between the automated test requirements and the software requirements, so that
the automated test requirements can be tracked to the corresponding software requirements.

 Automatic test design is based on automated test requirements, designs test cases, and builds a
tracking matrix between test cases and test requirements and software requirements. The coverage
rate of test cases can reflect the adequacy of test design, which can be stratified and classified,
reusable automated test cases can be modified, and the reuse, modification, and addition of test
cases can be distinguished by identification [28-30]. Test case information elements include test case
name, identification, test type, preconditions, test step, expected results, designer, design date, etc.

 Automatic execution test cases, establish the tracking matrix of test case execution and software
requirements, has passed the test case coverage of software requirements can reflect the technical
status of the current software version, the software defects found automatically into the software
defect database, and establish the tracking matrix of software defects and execution cases, facilitate
the rectification of software defects to zero.

The regression test execution mainly includes the first round test, the first regression test, and
the second regression test, involving the influence domain analysis, regression test case selection,
and regression test data statistics. Test defect information elements include defect severity, defect
distribution, test adequacy, etc.

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 164-180

171

3. Results
3.1 Manual and Automated Unit Testing Process and Comparative Analysis

 As a means of checking and verifying the minimum testable unit, a unit test can find defects the
first time and plays an important role in software quality assurance.

Due to the high writing cost of the unit tests, Is more needed to use automated generation in
software testing, To write higher-quality test cases at a lower cost, The embedded software
development platform integrates the EvoSuite unit test case automated generation tool, which can
automatically generate test controls and complete, passable unit test scripts, simulate and
encapsulate all function calls of the tested software, Provide optional automated detection
parameters and data, test case call sequence validation, interface error detection and error injection,
etc., Figure 3 is a schematic diagram of the test call control, Test case execution achieves 100% code
coverage when checking the data, parameters, and call order.

Fig. 3. Schematic diagram of the test call control

A function prototype in the header file can be used to generate test cases. Using tools to integrate

automated testing improves the commonly used simple black box test for a complete white box test.
 The automatically generated test script generates a test case for each function prototype defined

in the header file. Create more test cases based on these use cases and avoid manually adding the
information contained in the function prototype to the test case.

Test cases are associated at design time with the requirements being imported. The correlation
between test cases, code, and requirements makes later code refactoring much easier.

Develop a smart home control system based on the JAVA language using MicroEJ on the
embedded development management platform, The system can control lights, temperature, security
cameras, and other devices. The system operates on an embedded device and requires a modular
design to manage a variety of functions.

The embedded software contains 13,500 lines of code divided into 114 modules, each module
responsible for different functions. The equipment control module is responsible for communication
and control with various hardware devices (lights, temperature sensors, cameras, etc.). The
communication module is responsible for handling communication with the user interface or
external systems. Use the Java network programming library to establish communication with the

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 164-180

172

mobile application or remote-control interface to receive user commands and send instructions to
the device control module. The user interface module is used to display the device status, receive
user input, and provide user feedback. This can be done using Java's graph library. The security
module is responsible for protecting the security of the system, possibly including authentication,
access control, and data encryption. Log and debugging modules to facilitate troubleshooting and
performance optimization, create a module to record logging and support remote debugging. The
modular design can more easily manage the complexity of the embedded software and make the
various parts relatively independent, thus improving the maintainability and scalability.

The following is the process of unit testing of one of the modules in both manual and automatic
ways. The steps of manual unit test for the temperature acquisition and processing system of the
developed based on MicroEJ on the embedded development management platform and automated
unit test using EvoSuite are as follows:

Step 1: Environment Settings and project creation

In the Embedded Development Management Platform, open the New Project wizard, select the

MicroEJ project type, and set the project name to MTMS and the target hardware platform to MicroEJ.
Ensure that MicroEJ SDK is installed and configured in the development environment.

Step 2: Write the temperature acquisition and processing module code

Create the Java class TemperatureSensorModule and TemperatureProcessingModule in the

project for the temperature sensor module and the temperature processing module, respectively.
Implement the corresponding functional methods in these classes, collectTemperature(), and

convert to Fahrenheit (double Celsius).

Step 3: Write the manual unit test

Create a test directory test in the project to store the test code. In the test catalog, create test

classes TemperatureSensorModuleTest and TemperatureProcessingModuleTest for the temperature
sensor and processing module.

In the test class, test cases are written and then verified using the assertion. Use the command-
line program to simulate manual testing. Create a TemperatureProcessing instance and call its
method for temperature conversion and acquisition. Then, according to the actual output value,
judge whether the test has passed. The part of code is as follows:

public class TemperatureProcessingManualTest {
 public static void main(String[] args) {
 TemperatureProcessing processor = new TemperatureProcessing();
 // Test temperature conversion
 double celsius = 20.0;
 double fahrenheit = processor.convertToFahrenheit(celsius);
 if (Math.abs(Fahrenheit - 68.0) < 0.01) {
 System.out.println("Temperature conversion test passed.");
 } else {
 System.out.println("Temperature conversion test failed.");
 }

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 164-180

173

 // Test temperature collection range
 double temperature = processor.collectTemperature();
 if (temperature >= -40.0 && temperature <= 125.0) {
 System.out.println("Temperature collection range test passed.");
 } else {
 System.out.println("Temperature collection range test failed.");
 }
 }
}

Step 4: Perform the manual unit test

Run the test code in the MicroEJ development environment. By right-clicking on the test class

and selecting Run. Observe the output results. If the test passes, the output displays a success
message; if the test fails, the output displays a failure message.

In study, both manual and automated testing phases utilized three distinct data sets, each
containing a specific number of test cases. These data sets were meticulously curated to evaluate the
robustness and efficiency of the testing methods. They are labeled as Data Set 1, Data Set 2, and Data
Set 3:

Data Set 1: 342 test cases were completed in 28.5 hours, attaining 85% test coverage;
Data Set 2: Consisting of 350 test cases, it was wrapped up in 29 hours, achieving an 86% coverage;
Data Set 3: This set featured 346 test cases that were executed over 28.8 hours, securing 84%
coverage.

To ensure thoroughness, results from each test case were systematically documented in an Excel
spreadsheet. This rigorous record-keeping facilitated efficient monitoring of progress and swift
identification of issues.

Step 5: Integrate the EvoSuite

Integrate the EvoSuite tool into the project, run EvoSuite, and let it analyze the code to generate

test cases. Use the following command line:

evosuite -target .package.TemperatureProcessing

Step 6: Automatically generate the test cases

Using the EvoSuite tool, specify the classes to analyze (TemperatureSensorModule and

TemperatureProcessingModule) and have it automatically generate test cases.
Open EvoSuite: Launch EvoSuite from the command line or use the integrated development

environment (IDE) plugin if available. Ensure that the tool is properly configured to work with your
project.

Specify Classes: In EvoSuite, specify the classes want to analyze for test case generation. In this
case, mention TemperatureSensorModule and TemperatureProcessingModule as the target classes.

evosuite -class com.TemperatureSensorModule -class com.TemperatureProcessingModule

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 164-180

174

Generate Test Cases: Execute EvoSuite with the specified classes to trigger the test case
generation process. EvoSuite will automatically analyze the classes and generate a set of test cases.

evosuite -class com.TemperatureSensorModule -class com.TemperatureProcessingModule -
generateTests

Review the generated tests after EvoSuite completes the test case generation. The tests can be
found in the output directory or as specified in the EvoSuite configuration. Ensure that the generated
tests cover various scenarios and edge cases.

Save Generated Tests:Save the generated test cases in an appropriate directory within your
project. These tests will be added to the MicroEJ development environment for verification.

Step 7: Run the automated unit test

EvoSuite generates a set of test cases that can be added to the MicroEJ development

environment and run to verify the code.
The following are the test run results for the automated test phase:

Data Set 1: Comprised of 400 test cases, it was completed in 20 hours and achieved a coverage of
85%.
Data Set 2: This set contained 420 test cases, was executed in 21 hours, and reached a coverage of
92%.
Data Set 3: With 410 test cases, the tests took 20.5 hours and secured a 90% coverage.

It is noteworthy that the automated testing phase led to an improvement in test coverage by at
least 5% when compared to the manual phase.The test time was saved by about 35%。 A
comparative analysis of the results from both testing methods across the three data sets is illustrated
in Figure 4.

Step 8: Analyze the test results

Analyze the test output generated by EvoSuite to confirm the coverage of test cases and test

results.
The actual output of each test case was analyzed to check its agreement with the expected output.

Ensure that the temperature module works properly under all conditions. When comparing the
advantages of automated and manual testing in terms of coverage and efficiency, the following
includes more accurate data descriptions.

A comparative analysis of the results from both testing methods across the three data sets is
illustrated in Figure 4. As can be seen from Figure 4, the number of test cases for manual testing is
lower in each dataset compared to automated testing. This indicates that manual testing requires
fewer test cases to cover the same functionality. However, it is noteworthy that automated testing
demonstrates significantly lower execution times (around 35%) compared to manual testing. This
implies that automated testing is more efficient, as it can typically execute a large number of test
cases in a shorter amount of time. In terms of test coverage, automated testing appears to perform
better. The test coverage for automated testing is higher in each dataset compared to manual testing.
This suggests that automated testing is more likely to achieve comprehensive test coverage. Overall,

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 164-180

175

automated testing shows advantages in efficiency and test coverage, as it can execute a greater
number of test cases more quickly and achieve higher test coverage.

Fig. 4. Comparison of manual vs. automated testing results across three datasets

When considering test coverage, automated testing emerges as the superior option. Test

coverage metrics consistently indicate that automated testing achieves higher coverage rates across
all datasets compared to manual testing. This suggests that automated testing is better positioned
to attain comprehensive test coverage. In summary, automated testing not only excels in efficiency
but also outperforms manual testing in terms of test coverage. It can execute a larger number of test
cases more swiftly while achieving broader test coverage. Moving forward, we will delve into a
detailed analysis of the differences between manual and automated tests, focusing on test case
density and defect density. In essence, automated testing presents three advantages:

It demonstrates high efficiency by rapidly processing a more significant number of test cases. It
also maintains consistently broader test coverage. In terms of speed, it consistently reduces
execution times, delivering results in nearly half the time.

When examining solely the test coverage metric, the superiority of automated testing becomes
even more pronounced. Its consistent performance across datasets underscores its potential to
deliver a more exhaustive examination of the software under test.

In conclusion, automated testing offers a compelling advantage, both in processing speed and in-
depth coverage. Our next steps involve a granular analysis, delving into the nuances between manual
and automated testing, with a particular emphasis on test case density and defect density.

3.2 Test Case Density Analysis

Test Case Density is a metric that quantifies the distribution of test cases in relation to a specific

aspect of the software, often its size or complexity [31]. It is calculated as:

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 164-180

176

Test	Case	Density = 	!"#$%&	()	*%+,	-.+%+
/(),0.&%	1%,&23

 [1]

In the context of our study, the "Software Metric" in Equation [1] corresponds to the number of

lines of code (LOC) in the software. From Table 2, it is evident that automated testing exhibits a
consistently higher test case density relative to manual testing across all datasets. This suggests that
automated testing likely provides more comprehensive test coverage in relation to the total lines of
code within the software.

Table 2
Comparison of test case density between manual testing and automated testing
Test Type Data set Test Cases Software Metric Test Case Density (Test

Cases per Line of Code)
Manual Testing Set 1 342 13,500 0.0253
Manual Testing Set 2 350 13,500 0.0259
Manual Testing Set 3 346 13,500 0.0259
Automated Testing Set 1 400 13,500 0.0296
Automated Testing Set 2 420 13,500 0.0311
Automated Testing Set 3 410 13,500 0.0304

3.3 Test Defect Density

Test Defect Density is a metric that measures the number of defects identified during testing in

relation to a specific size or attribute of the software [32]. It provides insight into the quality of the
software or the effectiveness of the testing process. It is calculated using the following formula:

Test	Defect	Density = 	45%&.6%	7%)%3,+	8("9:

;<%3",2(9	*2#%
 [2]

Defect data from manual testing is meticulously recorded in an Excel sheet, featuring a

comprehensive table that catalogs defect records for each testing dataset. This table encompasses
essential details such as Defect ID, the number of test cases, test duration, test coverage, and the
count of identified defects. As illustrated in Figure 5. When employing automated testing procedures,
EvoSuite have the capability to generate comprehensive test reports once the test cases have been
executed. These reports encompass detailed information about the outcomes of each test case,
including any failures, along with additional statistical insights. Part of this test report section is
presented in Figure 6（a）. View the automated test log as shown in Figure 6（b）.

Fig. 5. Statistical table of the manual test data

Drawing upon the defect data analysis derived from the manual testing Excel records, it is evident

that the average number of defects across the three datasets subjected to manual testing stands at
10.

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 164-180

177

(a) (b)
Fig. 6. Screenshots of (a) the partial test defect report and (b) the automated test defect log

Upon examination of the automated test reports, it becomes evident that the average number

of defects across the three datasets subjected to automated testing is approximately 11.
From Table 3, manual testing's defect density across the datasets was approximately 0.38, 0.31,

and 0.34 defects per hour. This indicates that roughly 0.31 to 0.38 defects are identified every hour
during manual testing. A lower defect density here suggests a more stable software or fewer defects
unearthed through manual means. Conversely, automated testing reported defect densities of 0.55,
0.47, and 0.53 defects per hour across the respective datasets. This means automated testing
uncovers approximately 0.47 to 0.55 defects hourly. The elevated defect density with automated
tests hints at their potential efficiency in defect detection. Nevertheless, the disparity might also
relate to the volume of test cases and the test duration.

Table 3
Comparison of defect density between manual testing and automated testing
Test Type Dataset Defect Density (Defects

per Hour)
Manual Testing Set 1 0.38
Manual Testing Set 2 0.31
Manual Testing Set 3 0.34
Automated Testing Set 1 0.55
Automated Testing Set 2 0.47
Automated Testing Set 3 0.53

In terms of test defect density, we could conclude that, automated testing often identifies more

defects in a given time, resulting in a greater defect density. This could stem from its capability to
execute more test cases swiftly and navigate through various code paths. Conversely, manual
testing's lower defect density may signify more time taken to run identical test cases or a less
expansive coverage, which consequently detects fewer defects.

4. Conclusions

It is very important to implement automated testing through applying an embedded software

development platform. To achieve effective automated testing strategies, following best practices is
key. This includes selecting the appropriate tools, writing clear and concise test case scripts, testing
early and frequently, using versioning, and working with stakeholders. By following these best

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 164-180

178

practices, developers can ensure that their automated testing strategies are successful and that the
quality of the software is improved.

The study encompassed two principal testing phases: manual and automated testing. During
manual testing, three distinct datasets were evaluated, each demonstrating varying numbers of test
cases, execution times, and test coverage percentages. Meticulous record-keeping of test results
facilitated efficient progress tracking and issue identification throughout this phase.

In contrast, the automated testing phase employed an open-source test framework for test
execution, resulting in significantly improved test coverage compared to manual testing. Automated
testing not only achieved higher coverage rates but also demonstrated remarkable efficiency,
executing a greater number of test cases in considerably less time.

When examining defect density, automated testing consistently yielded higher defect densities
across different datasets, suggesting its effectiveness in defect detection. This could be attributed to
its ability to efficiently execute numerous test cases and cover extensive code paths.

Moreover, a detailed analysis of the results revealed that automated testing not only detected
the same defects as manual testing but also identified additional defects that were missed during the
manual phase. This highlighted the superior comprehensiveness and efficiency of automated testing.
Additionally, the automated approach significantly reduced execution times, achieving a 35%
reduction compared to manual testing while concurrently enhancing test coverage.

Overall, the study underscores the advantages of automated testing, showcasing its efficiency
and test coverage superiority over manual testing. It emphasizes the value of utilizing open-source
tools and frameworks to enhance the testing of embedded software. The insights gained from both
testing methods facilitated defect identification, software defect repairs, and performance
optimization, ultimately contributing to the improved performance and responsiveness of the
embedded software. Both testing methods proved effective in detecting system defects, but
automated testing emerged as the preferred choice due to its efficiency and broader test coverage
capabilities.

Looking ahead, future research can focus on advanced test automation techniques, including
machine learning and AI, to boost efficiency and effectiveness. Integrating automated testing into
CI/CD pipelines for rapid software delivery is a key area of exploration. Additionally, understanding
how human testers can effectively collaborate with automated tools, using strategies like exploratory
testing, is essential for comprehensive defect detection and efficient testing practices. These
directions promise to enhance software testing in an evolving development landscape.

In summary, by adopting a variety of automated testing methods and following best practices,
developers can establish effective automated testing strategies to ensure that the software is
adequately tested and delivered on time. Future research directions will mainly include:

i. The deepening of software security testing is very important in the field of embedded software

development. Future research will focus on deepening software security testing methods,
including further development of static code analysis, dynamic analysis, and vulnerability
scanning technologies. These methods will help automatically detect and fix security
vulnerabilities to ensure the security and defense of embedded systems.

ii. The application of machine learning and artificial intelligence, and the application of machine
learning and artificial intelligence technology will become an important trend of automated
testing. Future research will explore how these techniques can be utilized to improve
automated testing, including automated generation of test cases, intelligent defect detection,
and automated analysis of test results. This will improve testing efficiency, accuracy, and
adaptability, and help to better cope with complex embedded system testing requirements.

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 164-180

179

These research directions will drive the continuous development of automated testing
technologies in the field of embedded software development to ensure software quality, safety, and
reliability. At the same time, they can also help to improve testing efficiency, shorten development
cycles, and adapt to the increasingly complex embedded system testing requirements.

Acknowledgement
The authors wish to thank Universiti Malaysia Sarawak for the financial support of this project.

References
[1] Durelli, Vinicius HS, Rafael S. Durelli, Simone S. Borges, Andre T. Endo, Marcelo M. Eler, Diego RC Dias, and Marcelo

P. Guimarães. "Machine learning applied to software testing: A systematic mapping study." IEEE Transactions on
Reliability 68, no. 3 (2019): 1189-1212. https://doi.org/10.1109/TR.2019.2892517

[2] Swillus, Mark, and Andy Zaidman. "Sentiment overflow in the testing stack: Analyzing software testing posts on
Stack Overflow." Journal of Systems and Software 205 (2023): 111804. https://doi.org/10.1016/j.jss.2023.111804

[3] Huong, Tran Nguyen, Lam Nguyen Tung, Hoang-Viet Tran, and Pham Ngoc Hung. "An automated stub method for
unit testing c/c++ projects." In 2022 14th International Conference on Knowledge and Systems Engineering (KSE),
pp. 1-6. IEEE, 2022. https://doi.org/10.1109/KSE56063.2022.9953784

[4] Gurcan, Fatih, Gonca Gokce Menekse Dalveren, Nergiz Ercil Cagiltay, Dumitru Roman, and Ahmet Soylu. "Evolution
of software testing strategies and trends: Semantic content analysis of software research corpus of the last 40
years." IEEE Access 10 (2022): 106093-106109. https://doi.org/10.1109/ACCESS.2022.3211949

[5] Al-Saqqa, Samar, Samer Sawalha, and Hiba AbdelNabi. "Agile software development: Methodologies and
trends." International Journal of Interactive Mobile Technologies 14, no. 11 (2020).
https://doi.org/10.3991/ijim.v14i11.13269

[6] Alakus, Talha Burak, Resul Das, and Ibrahim Turkoglu. "An overview of quality metrics used in estimating software
faults." In 2019 International Artificial Intelligence and Data Processing Symposium (IDAP), pp. 1-6. IEEE, 2019.
https://doi.org/10.1109/IDAP.2019.8875925

[7] Lu, Shuyi, Honghui Li, and Zhouxian Jiang. "Comparative study of open source software reliability assessment tools."
In 2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS), pp. 49-55. IEEE,
2020. https://doi.org/10.1109/ICAIIS49377.2020.9194946

[8] Bui, Thu Anh, Lam Nguyen Tung, Hoang-Viet Tran, and Pham Ngoc Hung. "A method for automated test data
generation for units using classes of qt framework in c++ projects." In 2022 RIVF International Conference on
Computing and Communication Technologies (RIVF), pp. 388-393. IEEE, 2022.
https://doi.org/10.1109/RIVF55975.2022.10013869

[9] Alferidah, Saja Khalid, and Shakeel Ahmed. "Automated software testing tools." In 2020 International Conference
on Computing and Information Technology (ICCIT-1441), pp. 1-4. IEEE, 2020. https://doi.org/10.1109/ICCIT-
144147971.2020.9213735

[10] Tzoref-Brill, Rachel, Saurabh Sinha, Antonio Abu Nassar, Victoria Goldin, and Haim Kermany. "Tackletest: A tool for
amplifying test generation via type-based combinatorial coverage." In 2022 IEEE Conference on Software Testing,
Verification and Validation (ICST), pp. 444-455. IEEE Computer Society, 2022.
https://doi.org/10.1109/ICST53961.2022.00050

[11] Steimle, Markus, Nico Weber, and Markus Maurer. "Toward generating sufficiently valid test case results: A method
for systematically assigning test cases to test bench configurations in a scenario-based test approach for automated
vehicles." IEEE Access 10 (2022): 6260-6285. https://doi.org/10.1109/ACCESS.2022.3141198

[12] Dvornik, Nikita, Julien Mairal, and Cordelia Schmid. "On the importance of visual context for data augmentation in
scene understanding." IEEE transactions on pattern analysis and machine intelligence 43, no. 6 (2019): 2014-2028.
https://doi.org/10.1109/TPAMI.2019.2961896

[13] Liang, Yuanzhen. "Application of Artificial Intelligence Algorithm and Deductive Database in Special Scene
Recognition." In 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT), pp. 1012-
1015. IEEE, 2022. https://doi.org/10.1109/ICSSIT53264.2022.9716323

[14] Chaudhary, Sonam, Ankur Choudhary, and Jyotsna Seth. "Nature Inspired Approaches for Test Case Selection in
Regression Testing: A Review." In 2023 13th International Conference on Cloud Computing, Data Science &
Engineering (Confluence), pp. 644-649. IEEE, 2023. https://doi.org/10.1109/Confluence56041.2023.10048797

[15] Choudhary, Bharat, and Shanu K. Rakesh. "An approach using agile method for software development." In 2016
International Conference on Innovation and Challenges in Cyber Security (ICICCS-INBUSH), pp. 155-158. IEEE, 2016.
https://doi.org/10.1109/ICICCS.2016.7542304

https://doi.org/10.1109/TR.2019.2892517
https://doi.org/10.1016/j.jss.2023.111804
https://doi.org/10.1109/KSE56063.2022.9953784
https://doi.org/10.1109/ACCESS.2022.3211949
https://doi.org/10.3991/ijim.v14i11.13269
https://doi.org/10.1109/IDAP.2019.8875925
https://doi.org/10.1109/ICAIIS49377.2020.9194946
https://doi.org/10.1109/RIVF55975.2022.10013869
https://doi.org/10.1109/ICCIT-144147971.2020.9213735
https://doi.org/10.1109/ICCIT-144147971.2020.9213735
https://doi.org/10.1109/ICST53961.2022.00050
https://doi.org/10.1109/ACCESS.2022.3141198
https://doi.org/10.1109/TPAMI.2019.2961896
https://doi.org/10.1109/ICSSIT53264.2022.9716323
https://doi.org/10.1109/Confluence56041.2023.10048797
https://doi.org/10.1109/ICICCS.2016.7542304

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 164-180

180

[16] Vijayasarathy, Leo R., and Charles W. Butler. "Choice of software development methodologies: Do organizational,
project, and team characteristics matter?." IEEE software 33, no. 5 (2015): 86-94.
https://doi.org/10.1109/MS.2015.26

[17] Elbanna, Amany, and Suprateek Sarker. "The risks of agile software development: learning from adopters." IEEE
Software 33, no. 5 (2015): 72-79. https://doi.org/10.1109/MS.2015.150

[18] Ran, Dezhi, Hao Wang, Wenyu Wang, and Tao Xie. "Badge: prioritizing UI events with hierarchical multi-armed
bandits for automated UI testing." In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE),
pp. 894-905. IEEE, 2023. https://doi.org/10.1109/ICSE48619.2023.00083

[19] Moghadam, Mahshid Helali, Mehrdad Saadatmand, Markus Borg, Markus Bohlin, and Björn Lisper. "Machine
learning to guide performance testing: An autonomous test framework." In 2019 IEEE international conference on
software testing, verification and validation workshops (ICSTW), pp. 164-167. IEEE, 2019.
https://doi.org/10.1109/ICSTW.2019.00046

[20] Younas, Muhammad, Dayang NA Jawawi, Imran Ghani, Terrence Fries, and Rafaqut Kazmi. "Agile development in
the cloud computing environment: A systematic review." Information and Software Technology 103 (2018): 142-
158. https://doi.org/10.1016/j.infsof.2018.06.014

[21] Liao, Lizhi. "Addressing Performance Regressions in DevOps: Can We Escape from System Performance Testing?."
In 2023 IEEE/ACM 45th International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), pp. 203-207. IEEE, 2023. https://doi.org/10.1109/ICSE-Companion58688.2023.00056

[22] Javed, Omar, Joshua Heneage Dawes, Marta Han, Giovanni Franzoni, Andreas Pfeiffer, Giles Reger, and Walter
Binder. "Perfci: A toolchain for automated performance testing during continuous integration of python projects."
In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering, pp. 1344-1348.
2020. https://doi.org/10.1145/3324884.3415288

[23] Kumbhar, Saurabh, Prashant Bartakke, and Sanjay Kuchekar. "Software Test Automation of Electronic Control
Unit." In 2022 International Conference on Recent Trends in Microelectronics, Automation, Computing and
Communications Systems (ICMACC), pp. 1-5. IEEE, 2022. https://doi.org/10.1109/ICMACC54824.2022.10093382

[24] Bhaskar, Lavanya, Rahul B. Natak, and R. Ranjith. "Unit testing for USB module using google test framework."
In 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp.
1-3. IEEE, 2020. https://doi.org/10.1109/ICCCNT49239.2020.9225528

[25] Zheng, Yu, Jun Shen, Ru Jia, and Ru Li. "Research on Automatic Generation of Comment Labels Oriented to Users’
Individualized Needs." In 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in
Design (CSCWD), pp. 371-376. IEEE, 2022. https://doi.org/10.1109/CSCWD54268.2022.9776311

[26] Huang, Song, Sen Yang, Zhanwei Hui, Yongming Yao, Lele Chen, Jialuo Liu, and Qiang Chen. "Runtime-environment
testing method for android applications." In 2019 IEEE 19th International Conference on Software Quality,
Reliability and Security Companion (QRS-C), pp. 534-535. IEEE, 2019. https://doi.org/10.1109/QRS-C.2019.00111

[27] Morales, Itza, Clifton Eduardo Clunie-Beaufond, and Miguel Vargas-Lombardo. "Coordination and Flexibility in the
Management of Software Development Processes for Start-Up Companies." In International Conference on Applied
Technologies, pp. 412-425. Cham: Springer International Publishing, 2021. https://doi.org/10.1007/978-3-031-
03884-6_30

[28] Dingsøyr, Torgeir, Finn Olav Bjørnson, Nils Brede Moe, Knut Rolland, and Eva Amdahl Seim. "Rethinking
coordination in large-scale software development." In Proceedings of the 11th international workshop on
cooperative and human aspects of software engineering, pp. 91-92. 2018.
https://doi.org/10.1145/3195836.3195850

[29] Dirim, Sahin, and Hasan Sozer. "Prioritization of test cases with varying test costs and fault severities for
certification testing." In 2020 IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pp. 386-391. IEEE, 2020. https://doi.org/10.1109/ICSTW50294.2020.00069

[30] Nyrud, Helga, and Viktoria Stray. "Inter-team coordination mechanisms in large-scale agile." In Proceedings of the
XP2017 scientific workshops, pp. 1-6. 2017. https://doi.org/10.1145/3120459.3120476

[31] Kim, Jang-Eun, and Bo-Hyun Shim. "A study on Mass production stage Tank Battle Management System
Environmental Stress Screening test method and application improvement based on Production process
data." Journal of Korean Society for Quality Management 43, no. 3 (2015): 273-288.
https://doi.org/10.7469/JKSQM.2015.43.3.273

[32] Nachiengmai, Wacharapong, Sakgasit Ramingwong, and Amphol Kongkeaw. "Implementing DDD for automatic test
case generation." Int. J. Inf. Educ. Technol. 10, no. 2 (2020): 117-121. https://doi.org/10.18178/ijiet.2020.10.2.1349

https://doi.org/10.1109/MS.2015.26
https://doi.org/10.1109/MS.2015.150
https://doi.org/10.1109/ICSE48619.2023.00083
https://doi.org/10.1109/ICSTW.2019.00046
https://doi.org/10.1016/j.infsof.2018.06.014
https://doi.org/10.1109/ICSE-Companion58688.2023.00056
https://doi.org/10.1145/3324884.3415288
https://doi.org/10.1109/ICMACC54824.2022.10093382
https://doi.org/10.1109/ICCCNT49239.2020.9225528
https://doi.org/10.1109/CSCWD54268.2022.9776311
https://doi.org/10.1109/QRS-C.2019.00111
https://doi.org/10.1007/978-3-031-03884-6_30
https://doi.org/10.1007/978-3-031-03884-6_30
https://doi.org/10.1145/3195836.3195850
https://doi.org/10.1109/ICSTW50294.2020.00069
https://doi.org/10.1145/3120459.3120476
https://doi.org/10.7469/JKSQM.2015.43.3.273
https://doi.org/10.18178/ijiet.2020.10.2.1349

