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High-Mix, Low-Volume (HMLV) production systems demand high operational flexibility and 
adaptive decision-making due to frequent fluctuations in demand, product variety, and 
resource constraints. This study proposes a hybrid approach that integrates discrete-event 
simulation (DES) with machine learning (ML) techniques to enhance production 
performance and decision support in HMLV environments. The research is motivated by the 
limitations of standalone methods—DES lacks adaptability, while ML models often fail to 
incorporate domain-specific knowledge and perform poorly with small, noisy datasets. The 
methodology involves three key phases: (1) development of a DES model to simulate the 
behaviour and structure of a representative HMLV system, (2) integration of supervised and 
unsupervised ML models (ARIMA, SVR, XGBoost, Random Forest, k-means) to enhance 
parameter prediction and product clustering, and (3) scenario-based testing and 
optimization under various scheduling rules and constraints. Model validation was 
conducted using historical production data from 20 parts over a 28-month period, with 
performance assessed through RMSE, MAE, and R² metrics. Results show that ARIMA 
outperforms ML models in capturing temporal trends, with relatively lower error rates 
despite a small dataset and high variability. Machine learning models demonstrated poor 
generalizability, with negative R² values indicating overfitting. These findings emphasize the 
challenges of applying black-box ML models in volatile, low-volume contexts without 
sufficient data. The study concludes that a hybrid model combining the explanatory power 
of simulation with the predictive potential of data-driven approaches offers a promising path 
for improving production planning, scheduling, and inventory decisions in HMLV settings. 
Future work should expand dataset size, explore seasonal models (e.g., SARIMA), and 
develop more interpretable hybrid frameworks to support agile, intelligent production 
management. 
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1. Introduction 
 
High-mix, low-volume (HMLV) production environments demand exceptional flexibility and 

responsiveness to manage varying customer requirements, fluctuating product demand, and 
complex service expectations from Gan et al., [1]. To remain competitive, production systems must 
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continuously adapt to dynamic conditions, often balancing trade-offs between conflicting KPIs such 
as delivery speed, quality, cost, and resource utilization. 

Ensuring consistently high production performance—especially in terms of product quality and 
service reliability—is critical, even when faced with external disruptions (e.g., supply chain volatility) 
or internal constraints (e.g., limited capacity, variable inventory levels). Day-to-day operations in 
HMLV settings are typically managed by agile, cross-functional teams that rely on lean tools such as 
pull systems, order grouping, and visual management Polo et al., [2]. Production levelling (Heijunka) 
is frequently used to smooth demand variability and distribute workloads evenly across production 
resources. 

To further stabilize and optimize production flows, clustering techniques like ABC/XYZ analysis or 
advanced machine learning algorithms can be used to group products into families for more efficient 
scheduling, especially on bottleneck machines conducted by Kandemir [3]. In fast-response 
scenarios, strategies such as lot splitting and controlled order release help reduce lead times while 
preserving production continuity. 

Efforts to improve equipment effectiveness and increase throughput are central to production 
efficiency. These may involve organizational changes, targeted maintenance strategies, or the use of 
inventory buffers and higher levels of work-in-progress (WIP)—each with associated trade-offs in 
cost and complexity. 

Despite these efforts, understanding the complex interactions between structural elements (e.g., 
layout, scheduling rules) and behavioral factors (e.g., operator decisions, variability) in HMLV 
production systems remains challenging. Traditional modeling tools like system dynamics and 
logistics curves provide useful insights but often fall short in capturing the full complexity of real-
world production environments. 

Emerging technologies—particularly cyber-physical production systems and advancements in 
data analytics—are transforming the way production is monitored and controlled. Big data and 
machine learning offer new opportunities to support, or even automate, decision-making in 
production management. While machine learning is effective at modeling complex, non-linear 
behaviors, it often lacks the ability to incorporate domain-specific engineering knowledge. 

In contrast, discrete-event simulation (DES) remains a powerful method for analyzing both the 
static configuration and dynamic behavior of production systems. DES enables detailed process 
modeling and supports scenario-based evaluations, but its drawbacks include high computational 
demands and limited adaptability to changing conditions. Hybrid methods such as simulation 
metamodeling can address some of these challenges by accelerating simulations, though they may 
reduce model interpretability. 

Given these limitations, this research aims to develop an integrated approach that combines 
model-based and data-driven methods to enhance production decision-making and performance 
management in HMLV environments. 

 
1.1 Literature Review 
1.1.1 Challenges in HMLV production 
 

High-Mix, Low-Volume (HMLV) production systems are characterized by a large variety of product 
types manufactured in small quantities, often tailored to specific customer requirements. These 
systems typically function within job-shop or flexible manufacturing environments where the 
material flow is highly dynamic, non-linear, and often unpredictable. Unlike mass production systems 
that benefit from repeatability and stable process flows, HMLV operations face continual changes in 
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product types, process routes, and scheduling requirements, making it difficult to maintain 
production efficiency and predictability from Gödri [4]. 

Additionally, managing work-in-progress (WIP) inventory becomes significantly more complex. 
Without precise coordination and visibility, WIP can accumulate unevenly across workstations, 
leading to bottlenecks in some areas and idle resources in others. This imbalance not only reduces 
throughput but also complicates the tracking and forecasting of orders. Balancing workloads across 
machines, operators, and production lines in such an environment requires advanced scheduling 
systems and intelligent dispatching rules that can adapt in real-time to production floor realities from 
a case study by Slomp et al., [5]. 

 
1.1.2 Lean Practices and Operational Flexibility 

 
Operational strategies such as pull systems, production leveling (Heijunka), and visual 

management have been widely adopted to manage demand variability and improve workflow 
stability Slomp et al., [5]. Heijunka, for example, aims to distribute work evenly to avoid bottlenecks 
and underutilization, even in low-volume, high-mix settings. Cross-functional team structures and lot 
splitting techniques are also used to enhance responsiveness and reduce lead times . 

Product clustering—grouping products into families based on similarities—has proven beneficial 
for simplifying scheduling on shared or bottleneck resources. While classical ABC/XYZ analysis is 
commonly used, more recent approaches leverage machine learning algorithms to identify patterns 
in product demand and behavior was conducted by Chen et al.,[6]. 

1.1.3 Data-Driven and Machine Learning Approaches 
 

The rise of big data, Industrial Internet of Things (IIoT), and advanced analytics has opened new 
possibilities for data-driven decision-making in production systems. Machine learning (ML) 
algorithms have been successfully applied to predict demand, detect anomalies, and optimize 
scheduling was found in Tadayonrad and Alassane [7]. However, these models often struggle to 
incorporate existing engineering knowledge, and their "black-box" nature can make interpretation 
difficult for production planners. 

Despite their predictive power, ML models alone may lack the robustness and structural insights 
provided by traditional simulation and engineering methods. This has led to increasing interest in 
hybrid approaches that combine data-driven models with simulation or rule-based systems to 
balance accuracy and interpretability from study conducted by Wardah et al., [8]. 

1.1.4 Towards Hybrid Production Analytics 

Recent studies have proposed integrating model-based (e.g., DES) and data-driven (e.g., ML) 
techniques to enhance production planning and performance management. Such hybrid systems aim 
to leverage the explanatory power of simulation with the adaptive capabilities of machine learning 
performed by Wardah et al., [8]. These approaches are particularly promising for HMLV settings, 
where both system complexity and variability are high. 

However, developing such systems remains a challenge, requiring careful alignment between 
simulation models, historical data, and real-time inputs. Research is still ongoing to address issues 
related to computational cost, scalability, transparency, and user acceptance in production 
environments. 

The literature underscores the complexity of managing production in HMLV environments and 
highlights the limitations of both traditional and purely data-driven methods. Discrete-event 
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simulation remains a core analytical tool, while the integration of machine learning is seen as a path 
toward more responsive and intelligent production systems. The development of hybrid, cyber-
physical analytics frameworks represents a promising research direction to support decision-making 
and performance optimization in modern HMLV production settings. 

 
2. Methodology  
 

The primary objective of this study is to develop and validate a hybrid model that integrates 
discrete-event simulation (DES) with machine learning (ML) techniques to optimize production 
performance in High-Mix, Low-Volume (HMLV) production systems. The goal is to improve decision-
making under high variability and complexity by leveraging both simulation-based and data-driven 
approaches. The model aims to enhance production scheduling, capacity planning, and resource 
allocation, thereby improving key performance metrics such as throughput, lead time, and resource 
utilization. 

2.1 Phase 1: System Modeling using Discrete-Event Simulation (DES) 
 

A discrete-event simulation model is developed to represent the structure and behavior of a 
selected HMLV production system. The simulation captures key components such as product variety, 
process routings, machine setups, resource constraints, and demand variability. Data for the model 
are collected from production records, historical logs, and direct observations at the case company. 
The simulation environment allows for the testing of different scheduling rules, capacity adjustments, 
and order release strategies. Performance metrics such as throughput, lead time, work-in-progress 
(WIP), resource utilization, and service level are used to evaluate system behaviour under different 
operating conditions. 

2.1.1 Research framework 

 
Fig. 1. Research framework 
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2.2 Phase 2: Data Collection and Machine Learning Integration 
 
This phase focuses on gathering relevant historical data and integrating machine learning 

techniques to improve the predictive accuracy and adaptability of the simulation model. The data 
collected includes detailed records of production performance, machine availability, setup times, and 
output quantities for selected part numbers. These data points are essential in capturing the 
operational variability and constraints that are typical in high-mix, low-volume (HMLV) 
manufacturing environments. 

Supervised learning algorithms are employed to estimate critical production parameters that 
influence system behavior. Specifically, time-series models such as ARIMA are used to forecast short-
term production output based on historical trends. In parallel, regression-based machine learning 
models—including Support Vector Regression (SVR), Random Forest, and XGBoost—are applied to 
predict production quantities and lead times by learning from multivariate input features such as 
machine load, tooling status, and historical cycle times was carried by Shahid et al., [9]. These models 
are selected for their ability to capture complex relationships and nonlinear patterns in production 
data. 

The outputs from both supervised and unsupervised models are then fed into the discrete-event 
simulation (DES) model as enriched input parameters. By doing so, the simulation reflects more 
realistic and dynamic system conditions, improving the model’s predictive fidelity and 
responsiveness to variable demand patterns. Ultimately, this integration of machine learning with 
simulation supports more informed decision-making in production scheduling, inventory control, and 
resource allocation, thereby enhancing system performance in complex manufacturing settings. 

2.3 Phase 3: Testing and Optimization 
 

The hybrid model is used to conduct scenario-based experiments. These scenarios include varying 
demand conditions, resource constraints, and control policies such as lot splitting, production 
leveling (Heijunka), and controlled order releases. The simulation is used to assess the effectiveness 
of these strategies in improving production performance, especially under volatile or constrained 
conditions. Comparative analysis is conducted between the current baseline performance and the 
outcomes achieved through the proposed hybrid approach. 

2.4 Phase 4: Validation and Analysis 
 

To ensure the credibility of the results, the simulation model is validated using real production 
data and feedback from domain experts within the case company. Key outputs from the simulation 
are compared with historical performance metrics to verify the model's accuracy. In addition, a 
sensitivity analysis is performed to understand how variations in input parameters—such as order 
arrival rates or setup time variability—affect overall system performance. 

3. Analysis 
3.1 Data Collection and Preparation 
 

The study focuses on collecting output data from 20 selected parts that share the same tooling, 
out of over 2,000 currently in production. If data gaps are identified, more parts will be added to 
ensure sufficient dataset size for machine learning analysis. A 28-month continuous production 
output will be used, particularly for ARIMA modelling, with minor adjustments made to improve data 
accuracy. 



Journal of Advanced Research in Computing and Applications 
Volume 39, Issue 1 (2025) 135-145 

 

140 
 

Data sources include sales orders or forecasted sales (units), actual production output from the 
INFOR Baan report (via the Planning department), and historical cycle times provided by the 
production manager. Additional inputs such as customized BOMs and machine rate tables will 
support the modelling. Tooling minimum and maximum levels (MIN-MAX) will be derived from 
SECO’s Tool Management System (TMS) historical records. 

 
3.2 Data Pre-processing 
 

Data preprocessing is a fundamental step in preparing raw data for machine learning, aimed at 
ensuring the dataset is clean, consistent, and properly structured for training. The process begins 
with handling missing values, which may arise from incomplete data collection or input errors. These 
gaps are addressed either by imputing values using statistical methods such as mean or median, or 
by removing data entries with excessive missing values from study of Han et al., [10].  Duplicate 
records are then identified and eliminated to prevent redundancy and reduce the risk of overfitting, 
ensuring the model learns from unique data points delivered by  Werner et al., [11]. Outliers, which 
are extreme values that can distort model performance, are detected using techniques like z-scores 
or the interquartile range (IQR) and are either removed or transformed to lessen their influence. 
Following this, data transformation is applied to standardize feature scales—commonly through Min-
Max scaling or Z-score normalization—so that variables with larger numerical ranges do not 
disproportionately impact model learning. Finally, categorical variables are encoded into numerical 
formats using methods like One-Hot Encoding or Label Encoding, allowing the model to interpret and 
utilize them effectively was found in study of Raschka et al., [12]. Together, these preprocessing steps 
enhance model accuracy, robustness, and generalizability . 
 
3.3 Feature Engineering 

 
Feature engineering plays a crucial role in enhancing the quality of the dataset for machine 

learning models. In this study, we aim to improve the dataset by splitting the monthly production 
output data into two time periods per month, which effectively doubles the dataset and provides a 
finer level of granularity. This allows the model to capture more detailed insights from the data. Any 
missing data is handled by imputing the missing values with the average value of the respective 
feature to maintain data consistency and avoid loss of information. Additionally, machine time data 
is scaled to ensure it is comparable with production output, which may have different units or ranges. 
Scaling ensures that all features are on a similar scale, which helps the model better understand 
relationships between variables. These feature engineering steps are designed to improve the 
model's ability to learn patterns from the data and make more accurate predictions. 

Hyperparameter tuning is another critical aspect of improving model performance. For the 
models used in this study (ARIMA, SVR, Random Forest, and XGBoost), tuning the hyperparameters 
is essential to achieve the best possible performance was carried by Farris et al., [13]. ARIMA has 
hyperparameters such as p, d, and q, which define the autoregressive, differencing, and moving 
average components of the model. For SVR, the hyperparameters include C, kernel, epsilon, and 
gamma, which control the regularization, kernel function, margin of tolerance, and kernel coefficient, 
respectively. In XGBoost, key hyperparameters include learning_rate, n_estimators, and max_depth, 
which determine the step size, the number of boosting rounds, and the complexity of each tree. For 
Random Forest, hyperparameters such as n_estimators, max_depth, and min_samples_split control 
the number of trees, the depth of each tree, and the minimum samples required to split an internal 
node. To find the optimal set of hyperparameters, we perform grid search or random search, testing 
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different combinations using cross-validation. This process helps to identify the hyperparameters 
that maximize predictive accuracy while minimizing errors like RMSE, MAE, and R². By fine-tuning 
these hyperparameters, we ensure that the models are well-optimized to make accurate predictions 
on unseen data. 
 
3.4 Model Training  
 

It refers to the process where a machine learning algorithm learns to recognize patterns and 
relationships within the training data. During this phase, the model fine-tunes its parameters to 
minimize a specified loss function, enabling it to make precise predictions based on the input 
features. The model utilizes the training dataset to understand the underlying structure of the data, 
such as identifying the link between customer features and churn in a classification task. The result 
of this training phase is a model that has been optimized to closely fit the training data, making it 
ready for evaluation based on its predictive performance. 

In this study, the performance of various models—Support Vector Regression (SVR), 
AutoRegressive Integrated Moving Average (ARIMA), Random Forest, and XGBoost—was assessed 
using different train-test splits: 90%-10%, 80%-20%, 70%-30%, and 60%-40%. These splits provide 
insight into how well the model generalizes when trained on different portions of the dataset. By 
evaluating the model's performance across these various splits, we can determine whether the 
model's ability to generalize improves or declines as the size of the training set changes. 
 
3.5 Model Validation 
 

The performance of the model is typically evaluated using several key metrics, including Root 
Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R² (Coefficient of Determination). 
RMSE measures the square root of the average squared differences between predicted and actual 
values, penalizing large errors more heavily, which makes it useful when large errors are particularly 
undesirable. MAE, on the other hand, provides a more straightforward measure of the average 
magnitude of errors without considering their direction, and is less sensitive to outliers compared to 
RMSE. Finally, R² indicates how much of the variance in the dependent variable is explained by the 
independent variables; 

In conclusion, model validation through testing on different train-test splits and evaluating 
performance via RMSE, MAE, and R² is essential for assessing the reliability and generalizability of 
machine learning models. This process allows for a robust comparison of different models, helping 
to identify the most appropriate one for a given dataset and task. The results also underscore the 
importance of cross-validation or using multiple train-test splits to prevent overfitting and ensure 
that the model can effectively handle unseen data in real-world applications. This validation 
approach ensures that the models used for decision-making and prediction are both reliable and 
adaptable to changing conditions. 

 
4. Result  
 

The findings of this study offer several insights into the comparative performance of machine 
learning and time-series models for forecasting in High-Mix, Low-Volume (HMLV) production 
environments. Among the models evaluated, the AutoRegressive Integrated Moving Average (ARIMA) 
model showed the most promising results given the constraints of the dataset. While ARIMA is widely 
recognized for its strength in modeling temporal dependencies, its performance in this study was 
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notably influenced by data limitations. With an RMSE of 200.45 and an R² of 0.68 under the 80%-20% 
train-test split, ARIMA successfully captured broad production trends. However, its predictive 
accuracy declined as the training set was reduced, reflected in increasing RMSE and decreasing R² 
values. This suggests that ARIMA, although effective at identifying trends, struggles to handle the 
high variability and noise commonly present in small HMLV datasets. 
 

 
Fig. 2. Comparison result of all machine learning model 

 

 
Fig. 3. Model comparison results 

 
It is also important to note that in time-series forecasting, especially with ARIMA, a relatively 

lower R² does not necessarily imply weak predictive accuracy according to Hewamalage et al., [14]. 
R² in time-series models can be misleading due to temporal autocorrelation and non-stationarity in 
the data, which affect the way variance is explained. Therefore, metrics such as RMSE and MAE often 
provide a more reliable indication of model performance in forecasting tasks. ARIMA’s strength lies 
in its ability to model sequential patterns and time-dependent fluctuations—an aspect where many 
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machine learning models fall short without additional feature engineering or lag structure 
representation from Mejri et al., [15]. 

In contrast, machine learning models—Support Vector Regression (SVR), Random Forest, and 
XGBoost—performed significantly worse. Across all data splits, these models consistently produced 
negative R² values, indicating they failed to outperform even a simple mean-based prediction. This 
poor performance is likely due to three primary factors: overfitting, data variability, and model 
appropriateness. First, models such as Random Forest and XGBoost likely overfitted to the limited 
training data, capturing noise rather than meaningful patterns. Second, the high product variability 
and short production runs characteristic of HMLV systems limit the models’ ability to generalize, 
especially with a dataset of only 56 data points. Lastly, these models, though powerful in large and 
structured datasets, are less suitable for time-series forecasting tasks involving small, irregular 
datasets without more extensive feature engineering and preprocessing. 

On an individual basis, ARIMA demonstrated relatively low RMSE and MAE compared to the 
machine learning models. Its ability to model time-dependent structures makes it an appropriate 
choice for forecasting in HMLV systems, especially when the goal is to detect underlying production 
trends. However, the model’s limited performance under higher data volatility confirms that ARIMA 
alone may not capture all aspects of complex production dynamics. 

SVR, while theoretically suitable for modeling non-linear relationships, displayed high RMSE 
values (404.53 to 440.23) and negative R² scores across all splits. This reflects SVR's sensitivity to 
noise and its tendency to overfit small datasets, particularly when the feature space includes 
irrelevant or inconsistent information. Despite its flexibility, SVR struggled to learn meaningful 
patterns under the constraints of this study. 

Random Forest showed moderate RMSE values (469.9 to 557.8) but continued to produce 
negative R², indicating insufficient generalization. Although ensemble methods like Random Forest 
are typically robust against overfitting and perform well on larger datasets, they underperformed in 
this case, likely due to the dataset's size and variability. While its results were marginally better than 
SVR, Random Forest still failed to model the underlying data effectively. 

XGBoost, known for its high predictive power and ability to handle structured data, performed 
the worst in this study. It exhibited the highest RMSE (599.12 to 693.08) and consistently negative R² 
across all test configurations. These results suggest that XGBoost severely overfit the training data, 
possibly due to the model’s complexity and the limited number of training examples. Without 
sufficient data variability, the model likely memorized noise, further diminishing its generalization 
ability. 

Overall, the discussion highlights that while ARIMA is not without limitations, it is better suited 
than complex machine learning models for forecasting in HMLV systems, particularly when datasets 
are small and noisy Xin et al., [16]. The results also reinforce that in time-series applications, lower 
R² values may still accompany accurate forecasts, especially when models like ARIMA effectively 
capture temporal structures. The findings underscore the critical importance of appropriate model 
selection, the use of time-aware metrics, and the potential value of hybrid or adaptive methods in 
complex manufacturing forecasting tasks. 

 
5. Conclusion  

 
This research set out to evaluate how a hybrid approach integrating discrete-event simulation 

(DES) with forecasting models can enhance decision-making in high-mix, low-volume (HMLV) 
production systems. The DES model successfully replicated the case company’s operations—
capturing product variety, process routings, machine setups, resource constraints, and demand 
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variability—and enabled the systematic testing of different scheduling, capacity, and order release 
strategies. 

Experimental evaluation of four forecasting methods—ARIMA, SVR, Random Forest, and 
XGBoost—showed that ARIMA best addressed the research objective of producing reliable short-
term output forecasts with limited, noisy data. ARIMA consistently outperformed the machine 
learning models, which struggled with overfitting and produced negative R² values. These findings 
confirm that, in small-sample, high-variability environments, time-series methods like ARIMA remain 
a dependable choice. 

To advance this work, larger datasets should be collected to strengthen the learning potential of 
advanced ML models, seasonality should be incorporated through models like SARIMA, and hybrid 
ARIMA–ML approaches should be explored to combine linear and non-linear forecasting strengths. 
These improvements could yield more accurate, flexible, and interpretable decision-support tools, 
directly enhancing production planning and performance in HMLV manufacturing. 
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