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Bifacial perovskite solar cells (B-PSCs) have emerged as a promising solution to 
enhance photovoltaic efficiency by harvesting light from both front and rear surfaces. 
While perovskite materials offer high power conversion efficiency and low-cost 
fabrication, traditional single-sided architectures limit their energy-harvesting 
potential. The purpose of this research is to systematically analyze recent progress in 
materials design, device architecture, and optical management strategies for B-PSCs. 
Key results indicate that optimized electrodes and interlayers significantly improve 
rear-side transparency, responsivity and overall energy yield. B-PSCs represent a viable 
pathway toward next-generation, high-efficiency photovoltaics, though further work 
is needed to address stability, large-scale production, and long-term operational 
performance. 
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1. Introduction 
 

The growing demand for renewable energy solutions has catalyzed significant advancements in 
photovoltaic technologies, with perovskite solar cells (PSCs) emerging as one of the most promising 
alternatives to traditional silicon-based systems due to their remarkable power conversion 
efficiencies (PCEs), low-cost fabrication processes, and material versatility [1]. Among the various 
device architecture in this field, bifacial perovskite solar cells (B-PSCs) have gained considerable 
attention due to their ability to harvest light from both front and rear surfaces, effectively enhancing 
total energy generation [2].  

The core theoretical advantage of B-PSCs lies in their ability to exploit direct, diffuse, and ground-
reflected light, phenomena explained by radiative transfer theory and the albedo effect, as illustrated 
in Figure 1. The latter refers to the fraction of solar radiation reflected from the ground or nearby 
surfaces and captured through the rear side of the solar cell. This dual-side illumination enables 
higher photocurrent generation compared to traditional monofacial architectures, thus expanding 
their operational efficiency in real-world environments such as building-integrated photovoltaics 
(BIPVs) [3], floating solar systems [4], and agrivoltaics installations [5]. 

In addition to outdoor applications, recent research has underscored the remarkable 
performance of B-PSCs under indoor lighting conditions. The high absorption coefficient, tunable 
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bandgap, and low-light response of perovskite materials make them highly suitable for energy 
harvesting in artificial or low-intensity environments. This opens new possibilities for B-PSCs in 
powering indoor Internet-of-Things (IoT) devices and self-powered electronics [6,7]. Notable studies 
have demonstrated promising PCE under indoor LED illumination, reinforcing the versatility of B-PSCs 
for multifunctional energy solutions [8,9] 

 

 
Fig. 1. Schematic illustration of a bifacial perovskite solar cell receiving light from both the front 
and rear sides, including direct sunlight, diffuse sky radiation, and ground-reflected light due 
to the albedo effect 

 
B-PSCs exploit the unique optoelectronic properties of perovskite materials, which contribute to 

their high efficiency and versatility. One of the most notable features is their high absorption 
coefficient, which allows them to capture a larger portion of the solar spectrum, enhancing their PCE. 
In addition, B-PSCs demonstrate exceptional defect tolerance, meaning they are less affected by 
imperfections in the material, ensuring stable performance over time. They also possess long carrier 
lifetimes and extended carrier diffusion lengths, which enable charge carriers to travel further 
without recombining, ultimately improving efficiency. The low surface recombination in B-PSCs 
minimizes energy losses at the interfaces, while passivated interfaces help reduce defects and 
increase the overall device stability. Furthermore, the tunable band alignment of B-PSCs allows for 
optimization of the energy levels, making them adaptable to a range of light conditions and improving 
their overall performance.  

B-PSCs also demand advanced structural engineering to achieve effective charge separation 
under dual-illumination. This typically involves a symmetrical or semi-transparent stack comprising 
transparent conductive oxides, passivated charge transport layers, and optimized band alignment to 
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facilitate charge collection from both surfaces [10,11]. Moreover, B-PSCs are made from abundant 
and cost-effective materials, and their improved efficiency reduces the need for excessive material 
use, resulting in lower production and operational costs. This combination of higher energy output, 
increased efficiency, durability, and economic advantages positions B-PSCs as a compelling 
alternative to traditional monofacial cells in the rapidly expanding solar energy market.  

This review provides a comprehensive overview of B-PSCs, exploring their structure, 
performance, and the underlying mechanisms that influence their efficiency. Despite these promising 
attributes, the development of B-PSCs faces several challenges, including issues related to material 
stability, carrier recombination, and the overall efficiency. By delving into the latest research and 
technological advancements, we aim to highlight the potential of B-PSCs as a transformative 
technology in the pursuit of more efficient and cost-effective solar energy solutions. 

 
2. Working Principle of B-PSCs 
2.1 Light Absorption, Charge Generation and Transport 

 
B-PSCs operate by harnessing incident light from both the front and rear surfaces of the device, 

thereby extending their photoconversion potential beyond that of conventional monofacial designs. 
The core of the device comprises a organic-inorganic hybrid perovskite such as methylammonium 
lead iodide, MAPbI3 (CH₃NH₃PbI₃) and formamidinium lead iodide, FAPbI3 (CH(NH2)2PbI₃), or all-
inorganic perovskite such as caesium lead iodide (CsPbI3) or its multi-cation variants which serves as 
the light-absorbing material due to its direct bandgap (typically ~1.5–1.8 eV) and exceptionally high 
absorption coefficients (>10⁵ cm⁻¹) [12-15]. 

Upon photon absorption, electron-hole pairs are generated and rapidly dissociate into free 
carriers due to the low exciton binding energy (~10–50 meV) intrinsic to perovskite materials. The 
efficient separation and collection of these carriers rely on a carefully engineered heterojunction 
stack. Electrons are typically transported through an electron transport layer (ETL) such as titanium 
dioxide (TiO₂), tin dioxide (SnO₂), or zinc oxide (ZnO) while holes migrate through a hole transport 
layer (HTL), often composed of Spiro-OMeTAD, Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] 
(PTAA), or nickel oxide (NiOX) [13, 16-18]. The energy level alignment between the perovskite and 
transport layers is critical for minimizing potential barriers and recombination losses. 

In bifacial architectures, both electrodes must be at least partially transparent to facilitate dual-
side illumination. Transparent conductive oxides (TCOs) such as indium tin oxide (ITO) or fluorine-
doped tin oxide (FTO) are typically employed at one or both interfaces. Charge collection is further 
influenced by the diffusion length and carrier mobility in the perovskite film, as well as the 
conductivity of the electrode. Additionally, bifacial designs often incorporate optical enhancement 
strategies such as photonic structures to maximize light trapping and internal photon recycling, thus 
enhancing charge generation without compromising extraction efficiency. 

 
2.2 Performance Metrics in B-PSCs 

 
The evaluation of B-PSCs extends beyond the conventional efficiency metrics used for monofacial 

solar cells due to their unique dual-illumination capability. While PCE remains a foundational metric, 
a more comprehensive performance characterization must account for additional parameters that 
reflect dual-sided light harvesting. These include the bifacial factor (BF), which quantifies the ratio of 
rear-side to front-side efficiency; the bifacial gain (BG), which measures the net improvement in 
power output compared to monofacial devices; and the energy yield (kWh/kWp/day), which captures 
long-term power generation under real-world conditions. 
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2.2.1 Power conversion efficiency (PCE) 
 
PCE is calculated using the standard formula following Eq. (1): 

 

𝑃𝐶𝐸 =
𝐽𝑠𝑐 ×𝑉𝑜𝑐 ×𝐹𝐹

𝑃𝑖𝑛
                                                                                                                                            (1) 

 
where, JSC is short-circuit current density, VOC is open-circuit voltage, FF is fill factor and Pin is the 
incident power density typically 100 mW/cm2 if measured under AM1.5G 1 sun illumination. In B-
PSCs, this value is typically determined separately for the front and rear surfaces due to varying 
optical paths and incident angles. 

 
2.2.2 Bifacial factor (BF) 

 
To capture the performance symmetry of bifacial devices, the BF is defined as shown in Eq. (2): 
 

𝐵𝐹 (%) =
𝑃𝐶𝐸𝑟𝑒𝑎𝑟

𝑃𝐶𝐸𝑓𝑟𝑜𝑛𝑡
 × 100                                                                                                                               (2) 

 
BF provides a dimensionless indication of rear-side utilization efficiency. High BF values (typically 

above 85%) are indicative of well-optimized rear electrode designs with minimal optical and electrical 
losses. 

 
2.2.3 Bifacial gain (BG) 

 
BG quantifies the net improvement in power output when both sides are utilized compared to a 

standard monofacial cell. BG is expressed as the percentage increase in energy yield attributable to 
rear-side illumination under standard testing conditions. This metric is particularly important for real-
world evaluations where diffuse and ground-reflected light (characterized through the albedo effect) 
can significantly enhance overall energy production as shown by Eq. (3): 

 

𝐵𝐺 (%) =
𝑃𝑏𝑖𝑓𝑎𝑐𝑖𝑎𝑙− 𝑃𝑚𝑜𝑛𝑜𝑓𝑎𝑐𝑖𝑎𝑙

𝑃𝑚𝑜𝑛𝑜𝑓𝑎𝑐𝑖𝑎𝑙
 × 100                                                                                                          (3) 

 
where Pbifacial is the power output or energy yield from the bifacial solar cell (front and rear) and 
Pmonofacial is the power output or energy yield from a monofacial solar cell (front only). 

 
2.2.4 Energy yield 

 
Energy yield typically expressed in kWh/kWp/day or kWh/kWp/year serves as a pivotal 

performance indicator for B-PSCs. This metric encapsulates the cumulative electrical output over 
extended temporal scales, inherently accounting for diurnal and seasonal variations in solar 
irradiance, temperature, and environmental conditions. Notably, energy yield reflects the tangible 
benefits of dual-sided light collection, especially in deployment scenarios where ground-reflected 
irradiance (albedo) significantly enhances rear-side illumination. As such, elevated energy yields in B-
PSCs substantiate their potential for high-efficiency deployment in real-world applications. 
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3. Performance of B-PSCs 
 
Over the past decade, B-PSCs have demonstrated rapid progress in efficiency and architecture 

refinement. Table 1 shows the recent progress in B-PSCs technology for 10 years starting from 2015 
to 2025. 

 
  Table 1 
  Summary of bifacial PSCs with PCE from front and rear side with bifacial factor 

Author/ Year Device Structure PCE (%) BF 
(%) Front Rear 

Fu et al., [19] FTO/ZnO/PCBM/CH3NH3PbI3/MoO3/In2O3:H 14.2 9.6 67.60 
Xiao et al., [20] ITO/bl-TiO2/m-TiO2/ CH3NH3PbI3/FTO 8.67 8.27 95.38 

ITO/bl-TiO2/m-TiO2/ CH3NH3PbI3/PEDOT/FTO 12.33 11.88 96.35 
Pang et al., [21] ITO/PEDOT:PSS/ CH3NH3PbI3/PCBM/Ag 8.04 5.24 65.11 

ITO/PEDOT:PSS/ CH3NH3PbI3/PCBM/Ag/MoOX 10.40 6.54 62.88 
ITO/PEDOT:PSS/ CH3NH3PbI3/PCBM/PEIE/Ag/MoOX 13.55 8.41 62.06 
ITO/PEDOT:PSS/CH3NH3PbI3/PCBM/PEIE/Ag/MoOX/back 
reflector 

14.5 11.37 78.41 

Hanmandlu et 
al., [22] 

ITO/PEDOT:PSS/ CH3NH3PbI3/BCP/Ag/MoO3 13.49 9.61 71.23 

Fan et al., [23] FTO/TiO2/FA0.5MA0.5PbI3-XClX /CuSCN/Au 12.47 8.74 70.09 
Martinez-D. et 
al., [24] 

ITO/SnO2/TiO2/ CH3NH3PbI3/PTAA/Au 12.9 9.1 70.54 

Deluca et al., 
[25] 

FTO/TiO2/Cs0.05FA0.79MA0.16PbI2.49Br0.51/CuSCN/ITO 1.7 1.4 82.35 

Pang et al., [26] ITO/PEDOT:PSS/Cs0.05 FA0.3 MA0.7 PbI2.51Br0.54/PCBM/BCP/ 
Ag/V2O5 

14.01 8.91 63.60 

ITO/PEDOT:PSS/ Cs0.05 FA0.3 MA0.7 PbI2.51Br0.54/PCBM/BCP/ 
Ag/V2O5/reflector 

15.39 12.44 80.83 

Li et al., [27] FTO/c-TiO2/m-TiO2/CsPbBr3/carbon/CsPbBr3/m-TiO2/c-
TiO2/FTO 

7.55 7.44 98.54 

Lee et al., [28] FTO/c-TiO2/m-TiO2/ CH3NH3PbI3/CT/MoOX/ITO 14.96 13.61 90.98 
Chiang et al., 
[29] 

FTO/TiOx/mp TiO2/ CH3NH3PbI3/Spiro/MoOX/IZO 16.40 15.26 93.04 

Chen et al., [30] ITO/NiOX/FA0.3MA0.7PbI3−xClx/PC61BM/BCP/Ag 12.7 7.33 57.72 
ITO/NiOx/FA0.3MA0.7PbI3−xClx/PC61BM/BCP/ 
Ag/TeO2 

18.86 15.12 80.17 

ITO/NiOX/FA0.3MA0.7PbI3−xClx-PEAI/ PC61BM / 
BCP/Ag 

16.07 8.40 52.27 

ITO/NiOX/FA0.3MA0.7PbI3−xClx-PEAI/ PC61BM / 
BCP/TeO2/Ag 

20.25 16.75 82.72 

ITO/NiOX/FA0.3MA0.7PbI3−xClx-PEAI/ PC61BM / 
BCP/Ag/TeO2-with glass reflector 

22.51 21.49 95.47 

ITO/NiOx/FA0.3MA0.7PbI3−xClx-PEAI-PEAI/ PC61BM / 
BCP/Ag/TeO2 

12.42 10.55 84.94 

Yang et al., [31] ITO/SnO2/CH3NH3PbI3/NiOX/ITO 8.47 7.10 83.83 
Li et al., [32] ITO/SnO2/CH3NH3PbI3/undoped Spiro-OMeTAD/ 

sorbitol/PEDOT:PSS/ITO 
15.02 13.79 91.81 

Liang et al., [33] ITO/np-SnO2/ CH3NH3PbI3/Spiro-OMeTAD/MoOX/ 
Ag/WO3 

15.40 9.70 62.99 

Chen et al., [34] FTO/TiO2/CsPbIBr2/Spiro-OMeTAD/Ag/TeO2 8.46 6.40 75.65 
Huo et al., [35] ITO/SnO2/CsMAFA/CuSCN/MoOX/ITO/Au 14.80 12.50 84.46 
Truong et al., 
[36] 

ITO/SnO2/Cs0.05FA0.80MA0.15PbI2.75Br0.25/HND-
NAr2/MoO3/Au/MoO3 

10.90 6.80 62.38 

ITO/SnO2/Cs0.05FA0.80MA0.15PbI2.75Br0.25/ 12.40 7.80 62.90 
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HND-DTP/MoO3/Au/MoO3 
ITO/SnO2/Cs0.05FA0.80MA0.15PbI2.75Br0.25/ 
HND-Cbz/MoO3/Au/MoO3 

11.60 6.10 52.58 

ITO/SnO2/Cs0.05FA0.80MA0.15PbI2.75Br0.25/ 
Spiro-OMeTAD/MoO3/Au/MoO3 

13.0 7.60 58.46 

Park et al., [37] ITO/GO/CH3NH3PbI3/C60/PEIE/Ag 12.48 11.45 91.74 
Elakshar et al., 
[38] 

ITO/SnO2/PCBA/Cs0.12FA0.88PbI3/SWCNT 16.30 6.90 42.33 

Heo et al., [39] ITO/PTAA/Cs0.05(FA0.92MA0.08)0.95Pb(I0.92Br0.08)3/C60/BCP/SnO2/ 
ITO 

17.68 16.01 90.55 

Jeong et al., [40] PI@GR(APSIM)/PEDOT:PSS/ CH3NH3PbI3/ 
CH(NH2)2PbI3/C60/BCP/PI@GR (TETA) 

15.10 13.80 91.39 

Najafi et al., 
[41] 

ITO/NiO np + PTAA/Cs0.15FA0.85Pb(I0.92Br0.08)3/PCBM/ZnO 
np/ZnO/ITO 

17.20 16.70 97.09 

ITO/NiO np + PTAA/ Cs0.15FA0.85Pb(I0.92Br0.08)3/PCBM/Zno 
np/ZnO/ITO 

15.80 14.90 94.30 

Zhang et al., 
[42] 

ITO/SnO2/Cs0.05FA0.85MA0.10Pb(I0.97Br0.03)3/Spiro-
OMeTAD/MWCNT/ITO/MgF2/IZO/ZnO/CdS/CuINSe2/ 
Mo/Glass 

22.20 10.80 48.65 

ITO/ SnO2/Cs0.05FA0.85MA0.10Pb(I0.97Br0.03)3/Spiro-
OMeTAD/SWCNT/ITO//MgF2/IZO/ZnO/CdS/CuINSe2/Mo/Glass 

21.40 16.80 78.50 

Fan et al., [43] ITO/SnO2/CH3NH3PbI3/WS2 + Spiro-OMeTAD/Ag 19.87 15.48 77.91 
Jiang et al., [44] FTO/MeO-

2PACZ/Rb0.05Cs0.05MA0.05FA0.85Pb(I0.95Br0.05)3/LiF/C60/SnO2/IZO 
21.40 20.01 93.50 

Zhang et al., 
[45] 

SWCNT/ Cu:NiOx/Cs0.05FA0.80MA0.15Pb(IxBr1-

x)3/SnO2/PCBM/SWCNT 
18.54 18.22 98.27 

Han et al., [46] FTO/c-TiO2/SnO2-Cl/ (FA0.95Cs0.05)PbI3)0.975(MAPbBr3)0.025/Spiro-
OMeTAD/MoO3/ITO/Ag/PMMA/MgF2 

24.12 21.37 88.60 

 
Albedo factors are one of the important criteria in enhancing the PCE of B-PSCs. The albedo factor 

was determined as the fraction of incoming solar radiation reflected by each surface [47]. Zhang et 
al.,[45] evaluated the performance of their B-PSCs under various environmental condition with 
different albedo factors. Figure 2a - 2c shows the angles of light received by B-PSCS that are installed 
with tilted, horizontal and vertical installing configuration. Figure 2d - 2k shows several common 
reflection surfaces that contribute to reflected illumination. These surfaces include snow, fiberglass, 
dry and wet soil, concrete, tile, sand, and grass. Among them, snow exhibited the highest albedo 
factor with 96% within the wavelength range of 300 to 850 nm, as shown in Figure 3. This followed 
by fiberglass with 67%, grass 37%, dry soil 34%, sand 28%, wet soil 19%, concreate 18% and tile 12%, 
respectively. 

Structural engineering plays the most crucial role in enhancing the transparency and optical 
performance of rear electrodes in B-PSCs. Various approaches have been explored, including the use 
of Fabry–Pérot resonant cavities and Bragg reflectors, which manipulate interference effects to 
maximize light transmission and reflection [48-55]. Other techniques include the incorporation of 
photonic crystals and nano-patterned dielectric layers, all of which can be tailored to manage light 
propagation and minimize parasitic absorption in the rear contact. Pang et al., [21] employed a 
PEIE/Ag/MoOX trilayer as the rear electrode in their device architecture. Hanmandlu et al., [22] 
utilized a BCP/Ag/MoO3 configuration, while Liang et al., [33] adopted a MoOX/Ag/MoOX structure to 
enhance rear-side transparency and stability.  
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Fig. 2. Angle of light from (a) Titled (b) Horizontal (c) Vertical installing configuration. Reflection surface of (d) 
Snow (e) Fibreglass (f) Dry soil (g) Wet soil (h) Concreate (i) Roof tile (j) Sand (k) Grass. Credit to photo captured 
by Erol Ahmed, Mike Erskine, Jens Freudenau, Joshua Sortino, Maxim Berg, Colin Lloyd on Uplash. Reproduced 
under CC-BY license. Copyright 2024 Springer Nature [45] 

 

 
Fig. 3. Albedo factor of eight common ground. Reproduced under CC-BY 
license. Copyright 2024 Springer Nature [45] 

 
Figure 4 presents the structural and morphological characteristics of a B-PSCs incorporating a 

BCP/Ag/MoO3 rear electrode. The schematic in Figure 4a outlines the overall device architecture, 
highlighting its light penetrate from direct illumination and reflected light from albedo effect. A cross-
sectional SEM image (Figure 4b) reveals the layered configuration of the cell, confirming the 
integration of the BCP/Ag/MoO3 stack with its film shows highest transparency. Figure 4c and 4d 
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show SEM surface images of BCP/Ag films with varying BCP/Ag silver thicknesses, demonstrating 
changes in film uniformity and morphology; inset photographs further illustrate the corresponding 
optical transparency of each film on glass substrates. Lastly, Figure 4e displays the fabricated 
semitransparent device, visually confirming the transparency and structural integrity of the electrode 
stack, which is critical for enabling rear-side light harvesting in bifacial configurations. This 
configuration resulting PCE of 13.49% from front-side and 9.61% from rear-side resulting BF with 
71.23% [22]. 

 

 
Fig. 4. Structural and morphological characteristics of a B-PSCs incorporating a BCP/Ag/MoO3 
rear electrode (a) Illustration of the device architecture (b) Cross-sectional SEM for whole 
device and film image of BCP/Ag/MoO3 layer (c) and (d) SEM surface images of BCP 8 nm/Ag 
9 nm and BCP 8 nm/Ag 15 nm, with insets displaying image of films deposited on glass 
substrates (e) Image of a semitransparent PSCs incorporating the BCP/Ag/MoO3 electrode 
structure. Reproduced from Ref. [22] Copyright 2017 American Chemical Society 

 
4. Challenges and Future Directions in B-PSCs 
4.1 Challenges 
4.1.1 Rear electrode transparency 

 
Achieving a high degree of transparency in the rear electrode is essential for efficient bifacial light 

harvesting; however, it often comes at the expense of electrical conductivity. Materials like ITO and 
FTO offer good transparency but suffer from brittleness and limited scalability. Meanwhile, ultrathin 
metal films and transparent conductive polymers provide flexible alternatives but typically exhibit 
higher sheet resistance and reduced durability. Balancing optical transmittance, electrical 
performance, and long-term reliability remains a significant challenge. 

 
4.1.2 Stability 

 
Material stability is a critical concern in B-PSC. Although perovskite materials exhibit excellent 

optoelectronic properties, they are inherently vulnerable to environmental stressors. Moisture, 
oxygen, UV radiation, and thermal cycling can degrade the perovskite layer and adjacent interfaces, 
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leading to phase decomposition and ion migration. In bifacial configurations, where both sides are 
exposed to the environment, the risk of degradation is even more pronounced. This necessitates the 
development of robust material compositions and interface engineering strategies that enhance 
intrinsic stability without compromising device performance. 

 
4.1.3 Encapsulation of dual-sided exposure 

 
Conventional encapsulation techniques, designed primarily for monofacial cells, are inadequate 

for bifacial architectures. Bifacial devices require symmetrical, transparent encapsulation on both 
front and rear sides to allow unhindered light entry while ensuring mechanical protection and 
environmental sealing. Developing encapsulants that combine high optical clarity, low water vapor 
transmission rates, UV resistance, and mechanical flexibility is particularly challenging. Moreover, 
ensuring compatibility between the encapsulant and various device layers without introducing 
interfacial degradation pathways is a critical requirement 

 
4.1.4 Process scalability for large-area devices 

 
Scaling B-PSC from laboratory-scale prototypes to industrially viable modules are hindered by 

challenges in maintaining uniformity over large areas. Achieving defect-free perovskite films with 
consistent thickness, grain size, and crystallinity is difficult at scale, particularly with solution-based 
deposition techniques. Additionally, large-area coating of transparent electrodes with low resistivity 
and high durability remains an unresolved issue. These fabrication inconsistencies lead to 
performance losses and reduced yield, limiting the commercial potential of bifacial perovskite 
technology. 

 
4.2 Future Directions 
4.2.1 Advanced light management structures 

 
Optimizing light management is key to maximizing the bifacial gain in perovskite solar cells. 

Integrating nanophotonic structures, such as photonic crystals, diffraction gratings, or plasmonic 
nanoparticles, can manipulate light paths to enhance absorption in the active layer from both the 
front and rear sides. Additionally, the use of textured substrates or reflective coatings can increase 
albedo utilization, particularly in diffuse light environments. These advanced designs not only 
improve photocurrent generation but also contribute to angular insensitivity and energy yield 
enhancement under real-world conditions. 
 
4.2.2 Development of durable transparent electrodes 

 
Future research should focus on developing rear electrodes that simultaneously offer high 

transparency, low sheet resistance, and robust environmental stability. Emerging materials such as 
doped metal oxides (e.g., AZO, GZO), graphene composites, and silver nanowire networks are 
promising candidates. These alternatives must be optimized for compatibility with perovskite layers 
and scalable fabrication techniques. Multilayer hybrid electrodes that combine metallic and dielectric 
components may also provide a tunable platform to meet performance and durability criteria for 
bifacial operation. 
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4.2.3 Development of advanced perovskite materials and stabilization techniques 
 
The future success of B-PSCs heavily depends on the development of perovskite materials with 

improved intrinsic stability and higher photoelectric conversion efficiency. Research is increasingly 
focused on compositional engineering, such as the incorporation of mixed cations (e.g., FA⁺, Cs⁺) and 
halides (e.g., I⁻/Br⁻) to form more stable and defect-tolerant perovskite phases. Furthermore, the 
application of molecular cross-linking techniques has shown significant promise in enhancing the 
performance of solar cell [14,56,57]. Other promising approaches include surface passivation using 
2D perovskite layers, incorporation of polymeric interlayers, and solvent engineering during film 
formation to achieve uniform crystal growth [58]. These combined strategies aim to produce high-
efficiency, moisture- and UV-resistant films suitable for long-term outdoor bifacial operation. 

 
4.2.4 Field testing and modeling under real conditions 

 
To bridge the gap between lab-scale efficiency and practical performance, extensive field testing 

under varied climatic and albedo conditions is essential. Such studies should evaluate long-term 
stability, bifacial gain, and energy yield in diverse environments. Moreover, integrating real-time 
monitoring data with machine learning models can aid in predictive performance modeling, enabling 
the design of adaptive systems tailored to specific geographies [59]. These insights will guide material 
selection, module design, and system optimization for widespread deployment. 

 
5. Conclusions 

 
B-PSCs represent a promising avenue for next-generation photovoltaic technologies, offering the 

potential for higher energy yield through dual-sided light harvesting. Over the past decade, significant 
progress has been made in material design, device architecture, and optical management strategies, 
enabling notable gains in efficiency and bifacial performance. However, challenges such as 
environmental stability, scalable fabrication, and reliable encapsulation remain critical barriers to 
commercial deployment. Continued research into robust materials, advanced transparent 
electrodes, and real-world performance modeling will be essential to unlock the full potential of 
bifacial perovskite technology in practical energy applications. 
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