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The rapid adoption of Internet of Things (IoT) devices, smart home appliances, and 
wireless electronics has created a growing demand for energy sources that can operate 
reliably and sustainably indoors. While traditional batteries provide a temporary 
solution, they are constrained by limited lifespans and the need for frequent 
maintenance or replacement. Indoor photovoltaics (IPVs), which convert artificial 
indoor lighting into electrical energy, have emerged as a compelling alternative. Among 
the materials explored for IPVs, silicon stands out due to its commercial maturity and 
excellent long-term stability. Although originally developed for outdoor use, silicon 
solar cells are now being adapted to function under low-intensity and narrow-
spectrum indoor lighting. This review examines the performance, advantages, and 
challenges of silicon solar cells in indoor environments. It highlights recent innovations 
in materials and device architectures, explores real-world applications, and discusses 
future directions that can enhance efficiency and integration. Despite certain 
limitations such as spectral mismatch and form factor constraints, silicon remains a 
promising platform for enabling maintenance-free, sustainable energy harvesting in 
indoor settings. 
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1. Introduction 
 

The proliferation of smart electronics and the Internet of Things (IoT) has fundamentally changed 
how energy is consumed and managed in indoor environments [1]. From smart thermostats and 
wearable health monitors to wireless sensor networks, the demand for continuous and autonomous 
power sources has increased exponentially. Traditional battery-powered solutions, while effective, 
pose significant limitations, including finite lifespans, maintenance requirements, and environmental 
concerns related to disposal and recycling. This has led researchers and technologists to explore 
alternative energy sources that can sustainably support indoor electronic devices.  

One of the most promising approaches is the use of photovoltaic (PV) technology, which has 
diverse applications in building-integrated PV (BIPV), portable and off-grid power systems, space 
satellites, agrivoltaics, and bifacial panel designs [2-6]. A specific branch of this technology is indoor 
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PV (IPVs), which harvest energy from ambient artificial light sources such as LED and fluorescent 
lamps[7]. Figure 1 shows some of the real-life applications of IPVs available in market. 

 

 
Fig. 1. Example of IPV application in real-world. (a) Inductive charging table by Panasonic, 
(b) iBeacon device by GCell, (c) Digital thermometer by Geratherm Medical AG, (d) Wireless 
solar-powered IoT dice, (e) Power management IC with 1 cm2 PV module for wireless sensor 
nodes, (f) Battery-less wireless temperature and humidity sensor by Afriso, (g) Smoke 
detector with integrated dye-sensitized solar cell by 3GSolar, (h) HeLi-on flexible solar 
charger using organic PV technology by InfinityPV. Figure compilation reproduced from [8]. 
Copyright (2024), Elsevier 

 
IPVs are distinguished from traditional solar PVs by their operating conditions. Unlike outdoor 

environments, where sunlight is intense and broadband with a spectrum reaching into the near-
infrared, indoor lighting is generally of lower intensity and narrower in spectral distribution, often 
concentrated in the visible range (400-700 nm). Additionally, indoor lighting conditions are more 
stable and predictable compared to the variable and sometimes harsh conditions outdoors. This 
difference in operating environment necessitates careful consideration of material properties, device 
architecture, and electronic integration for photovoltaic systems intended for indoor use. 

Among the variety of PV technologies including dye-sensitized solar cells (DSSCs) [9], organic PV 
(OPVs) [10-17], and perovskite solar cells (PSCs) [18-22], silicon remains a material of interest due to 
its established commercial infrastructure, abundance, and exceptional stability [23]. Although 
traditionally optimized for outdoor use under the AM1.5G solar spectrum, silicon solar cells are now 
being adapted for indoor lighting conditions[24]. These adaptations include physical restructuring, 
optical optimization, and system-level integration strategies. 

Despite not being spectrally ideal for indoor conditions, silicon solar cells have several inherent 
advantages. They are already mass-produced at a low cost, benefit from decades of research and 
development, and offer long-term operational stability [25]. Furthermore, they are available in 
miniaturized or customized modules that can be seamlessly integrated into indoor environments[26]. 
These factors make silicon solar cells a compelling option for enabling sustainable, maintenance-free 
indoor energy harvesting. 

This review explores the viability and current advancements of silicon solar cells for indoor 
applications. It begins with an examination of their performance under artificial lighting conditions, 
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followed by a discussion of key advantages and limitations. Recent innovations and practical use 
cases of indoor silicon photovoltaics are then highlighted. Finally, the review outlines future research 
directions and technological developments that could further improve their applicability and 
efficiency. 

 
2. Silicon Solar Cell Performance Indoors 
 

The performance of silicon solar cells in indoor environments is markedly different from their 
behavior under outdoor sunlight. This discrepancy arises primarily due to the spectral and intensity 
differences between natural sunlight and artificial indoor lighting. Silicon, with its indirect bandgap 
of approximately 1.1 eV, is optimized for broadband solar radiation that includes significant near-
infrared content [27]. In contrast, artificial light sources such as LEDs and fluorescent lamps emit a 
narrower spectrum of light, primarily in the visible range [28]. Moreover, the intensity of indoor light 
is typically one to two orders of magnitude lower than sunlight, with typical values ranging from 100 
to 1000 lux, corresponding to irradiance levels of 10 to 100 µW/cm2[29]. Figure 2 illustrates the 
AM1.5 solar spectrum compared to representative spectra of common indoor light sources, including 
cool LEDs and fluorescent lamps. Unlike the AM1.5 spectrum, which spans from ultraviolet to 
infrared, artificial light sources lack the infrared component and exhibit much narrower spectral 
widths. These fundamental differences in spectral distribution and intensity pose unique challenges 
for photovoltaic technologies designed for indoor environments. 

 

 
Fig. 2. Comparison of indoor light spectra (cool LED and typical fluorescent) with 
the standard AM1.5G solar spectrum (dark blue). Image sources: 
https://www.ossila.com 
 

Under such low-light conditions, several aspects of silicon solar cell behavior change. The open-
circuit voltage (Voc) decreases logarithmically with light intensity, leading to significantly lower 
voltages indoors. The fill factor (FF) and short-circuit current density (Jsc) are also adversely affected 
by parasitic resistances and recombination losses, which become more pronounced at lower light 
levels[1]. As a result, the overall power conversion efficiency (PCE) of silicon cells drops significantly 
indoors[30]. Despite these challenges, recent advancements have shown the IPV performance of 
crystalline and amorphous silicon solar cell as tubulised in Table 1. The table compiles recent research 

https://www.ossila.com/
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on the IPV performance of crystalline silicon (c-Si) and amorphous silicon (a-Si) solar cells under 
various artificial lighting conditions. Across the reported studies, c-Si cells often achieve superior Jsc, 
particularly under high illuminance (for example 126.0 mA/cm2 at 1000 lx in 2020 and 119.2mA/cm2 
at 1000 lx in 2023), which contributes to competitive PCEs even in artificial lighting. The table also 
shows a clear upward trend in PCE for both technologies over the years, with recent studies reporting 
notable efficiency improvements such as 16.3% for a-Si and 15.5% for c-Si in 2023, indicating material 
and design advancements tailored for indoor applications. Differences in active area, Voc, FF, and 
light source type further highlight the importance of optimising device architecture and testing 
conditions to maximise indoor energy harvesting performance. 

 
Table 1 
IPVs performance of crystalline (c) and amorphous (a) of silicon solar cells 

Year Devices Light Type/ 
Illuminance (lx) Voc (V) Jsc (mA/cm2) FF (%) PCE (%) Area 

(cm2) Ref 

2015 c-Si LED / 890 0.43 0.12 71 9.65 1 [31] 
a-Si LED / 200 2.46 14.2 57.2 7.51 3.18 [32] 

2016 a-Si FL / 1000 2.9 20 - 3.68 3.49 [33] 
2017 a-Si LED / 1000 0.63 83.85 58 - 3.60 [34] 
2018 c-Si LED / 1000 0.33 102.29 - - 1.93 [35] 
2019 a-Si LED / 200 0.63 21.8 68 12.2 1.04 [36] 
2020 c-Si LED / 1000 0.43 126.0 67.0 12.5 4 [37] 
2021 c-Si LED / 1000 1.18 41.73 59 9.3 48 [38] 

2023 
c-Si LED / 1000 0.519 119.2 71.3 15.5 4 

[39] a-Si LED / 1000 0.71 89.4 73.1 16.3 7.65 
 
3. Advantages and Limitations 
 

Silicon solar cells offer a unique blend of advantages that make them a valuable contender in the 
field of indoor photovoltaics. Foremost among these is their commercial maturity [40]. Silicon-based 
PV technologies benefit from decades of development, extensive global manufacturing 
infrastructure, and economies of scale that significantly reduce cost per watt. Their widespread 
availability and compatibility with standard semiconductor processing techniques also facilitate rapid 
prototyping and customization for various form factors. Another critical advantage is durability. 
Silicon solar cells are highly stable under ambient conditions, with proven lifespans of 25 years in 
outdoor installations. Indoors, where temperature fluctuations, humidity, and UV exposure are 
minimized, their operational stability is expected to be even higher. This makes them ideal for long-
term applications such as wireless sensor nodes, building automation systems, and energy-harvesting 
consumer electronics. 

However, several limitations restrict the indoor performance of silicon solar cells. Chief among 
these is spectral mismatch. Silicon’s bandgap and absorption profile are best suited for the full solar 
spectrum, which includes significant near-infrared components. Indoor light sources, particularly 
LEDs and compact fluorescents, emit narrower spectra concentrated in the visible region. This limits 
the number of photons silicon can absorb and convert efficiently. Another issue is reduced electrical 
performance under low-light conditions. As light intensity drops, the Voc, Jsc and FF of silicon cells 
decline disproportionately, leading to lower power output.  Form factor is also a challenge. 
Conventional c-Si modules are rigid and thick, making them less suited for applications requiring 
flexibility or ultra-compact design. Although thin-film silicon and micro-scale cell arrays address this 
partially, they often come at the cost of reduced efficiency or higher fabrication complexity. 
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While silicon solar cells have many strengths such as mature technology, environmental safety, 
and excellent durability, they must overcome challenges related to spectral mismatch, low-light 
electrical losses, and integration constraints to fully realize their potential in indoor applications. 

 
4. Future Direction 
 

One promising direction is spectral optimization. To bridge the spectral mismatch between silicon 
and indoor light sources, researchers are exploring the use of optical coatings, photonic structures, 
and surface texturing that enhance light absorption in the visible range. These techniques aim to 
minimize reflectance and increase the number of photons absorbed per unit area, thus improving 
efficiency under low-intensity, narrow-spectrum lighting. 

Tandem cell architectures represent another exciting avenue. By stacking a high-bandgap top cell 
such as perovskite above a silicon bottom cell, the overall device can harvest a broader range of the 
visible spectrum, enhancing performance under indoor lighting.  

Materials engineering efforts are also focused on developing low-cost, ultra-thin silicon wafers 
and flexible substrates that maintain reasonable efficiency while enabling new form factors. Roll-to-
roll processing and heterojunction designs are being explored to support lightweight and 
mechanically compliant modules suitable for integration into wearables, packaging, and non-planar 
surfaces. 

Finally, sustainability considerations are gaining prominence. As demand grows for eco-friendly 
electronics, silicon’s abundance, non-toxicity, and recyclability become even more attractive. 
Research is increasingly oriented toward circular design, where modules are designed for easy 
disassembly and material recovery, minimizing their environmental footprint. 

 
5. Conclusion 
 

Silicon solar cells, though historically tailored for outdoor photovoltaic applications, are steadily 
proving their relevance in indoor environments. Their resilience, cost-effectiveness, and 
environmental safety profile give them a strong foundation upon which enhancements can be made 
for indoor use. As this review has shown, silicon solar cells are already achieving indoor power 
conversion efficiencies of 3–16%. While not ideally suited to the spectral characteristics of artificial 
indoor lighting, ongoing innovations in optical engineering, tandem structures, and low-light power 
management are bridging the gap between traditional silicon cell design and the requirements of 
indoor energy harvesting. 
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