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Ensuring food safety remains a pressing global challenge due to the 
growing threat of contamination from microbial pathogens, chemical 
adulterants, and physical impurities. Traditional detection methods, 
while accurate, are often labor intensive, costly, and time-consuming 
limiting their applicability for real-time monitoring. This review aims to 
explore the integration of spectroscopy and machine learning (ML) as a 
powerful, non-destructive approach for the rapid detection and 
quantification of food contaminants. The paper critically examines recent 
advancements in spectroscopic techniques including Near-Infrared (NIR), 
Hyperspectral Imaging (HSI), Fourier-Transform Infrared (FTIR), Raman, 
and Ultraviolet-Visible (UV-Vis) spectroscopy when combined with both 
conventional machine learning algorithms and modern deep learning 
models. A comparative analysis of their performance across various food 
matrices is presented, highlighting their sensitivity, specificity, and 
operational feasibility. The review also identifies key limitations in current 
systems, such as data standardization, model interpretability, and 
hardware portability. Future research directions are discussed with an 
emphasis on explainable AI, the development of portable sensing 
platforms, and the establishment of open-access spectral databases to 
support widespread adoption in food quality monitoring. 
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1. Introduction 

 
Food safety is a worldwide issue in today's modern society, considering that millions are 

foodborne illness victims every year. According to the World Health Organization (WHO), over 600 
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million cases of foodborne disease are reported on an annual basis, with an estimated 420,000 deaths 
worldwide [1]. Young children, especially under five years of age, are most vulnerable, and therefore 
the urgent for an immediate intervention worldwide. Global food chains have raised the issue of 
industrial agriculture, global warming, and globalization. All of the above issues bring greater 
challenges in tracing and controlling food safety, especially for microbiological, chemical, and physical 
food contaminants [2]. In addition to the health effect of food safety, food contamination also raises 
economic consequences, such as product recall, disruption of trade, legal liability, and customer loss 
of confidence in food systems. 
     New food safety risks are induced by contaminants like pesticide residues, veterinary drug 
residues, heavy metals, and economically motivated adulterants, which continue to be a significant 
toxicological challenge [3]. Recent literature has reported the common occurrence of toxic analytes, 
like the highly toxic herbicide paraquat, which is still on the market in some regions of the world, 
pesticide residues on fruits, and mycotoxins in dried fruits. The  label-free electrochemical apt sensor 
that was capable of measuring paraquat levels in vegetables with high specificity and on-site 
applicability [4]. The hyperspectral imaging and deep machine learning algorithms to detect 
pesticide residues in grapes at more than 93% accuracy, enabling risk assessment of contamination 
and efficacy of the new detection technology [5]. The pinpointed mycotoxins, ochratoxin OTA and 
patulin PAT, as issues impacting fresh and dried fruits in their research on detection technologies 
for reducing their transmission. These new findings point to the fact that new detection methods 
are not only rapid and inexpensive but are also suitable for centralized laboratories and 
decentralized inspection stations in global food chains [6]. 

Previously, food contamination was identified with the help of analytical methods like high-
performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), 
microbial culture, and enzyme-linked immunosorbent assays (ELISA). Although such procedures are 
very sensitive and precise, they are subject to some limitations [7].  

These procedures usually require vast amounts of time, which may take hours or even days to 
yield results, thus not being suitable for perishables. Such techniques also require large laboratory 
space and lengthy sample preparation with advanced laboratory equipment. Additionally, these 
methods are largely destructive and not suitable for field-level or real-time analysis. Therefore, 
traditional systems based on these techniques have extremely limited applications in fast changing 
food safety situations, especially in those places that are decentralized and resource constrained [8]. 
Although miniaturization and automation have improved, such traditional systems continue to 
remain largely unable to meet the increased demand for portable, rapid-response, and efficient 
systems indispensable for food safety assurance. Due to the limitations mentioned above, 
spectroscopic methods have become more popular for food safety testing. Spectroscopy is a set of 
non-invasive, real-time, and chemically inert analytical instruments that allow for instant analysis of 
food matrices. Analytical methods like near-infrared (NIR) spectroscopy, Fourier-transform infrared 
(FTIR) spectroscopy, Raman spectroscopy, hyperspectral imaging (HSI), and ultraviolet-visible (UV-
Vis) fluorescence spectroscopy have proven useful in providing detailed molecular fingerprints. These 
methods are applied in food quality analysis, adulterant detection, and quantification of microbial 
contamination by specific spectral fingerprints [9]. These methods are specifically useful in 
discrimination of food quality, adulteration detection, and microbial contamination quantification by 
individual spectral fingerprints. For instance, NIR and FTIR spectroscopy are best suited for the 
analysis of chemical composition and detection of common adulterants. Raman spectroscopy, owing 
to its higher sensitivity to dry samples, is best suited for detection of microbial and chemical 
contaminants. In addition, hyperspectral imaging can capture spatial and spectral data concurrently, 
thus enabling surface inspection of fruits, vegetables, and meat for mold, bruising, or insect 
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infestation detection. These characteristics render spectroscopy a promising candidate to be 
incorporated in contemporary food monitoring systems [10]. 

However, the high dimensionality, noise, and complexity of spectral data pose formidable 
analytical challenges. The spectral data can exhibit gigantic variability in the environment, water 
content, and instrumentation and are therefore time-consuming and error-prone to handle 
manually. Machine learning (ML) and, more recently, deep learning (DL) have proven to be very 
potent tools for expanding the scope of spectroscopic analysis. ML enables automated decision-
making and pattern recognition processes on high-dimensional big data. Support vector machines 
(SVM), random forests (RF), and partial least squares regression (PLSR) are the preferred algorithms 
for classifying and regressing. Principal component analysis (PCA) and other dimensionality reduction 
methods are useful for preprocessing spectral data and therefore enhance model performance [11]. 
Concurrently, deep learning models, namely convolutional neural networks (CNN) and their one-
dimensional (1D CNN) counterpart, have also been found to be very efficient in the information 
extraction from raw spectral sequences derived from Fourier transform infrared (FTIR) or near-
infrared (NIR) spectrometers. The models bypass the requirement of human-crafted features and 
allow end-to-end learning scenarios [12,13]. 

Recent research has demonstrated the efficacy of hybrid approaches. Fourier-transform infrared 
spectroscopy (FTIR) coupled with one-dimensional convolutional neural networks (1D CNN) to 
identify melamine and cyanuric acid in pet food, obtaining correlation coefficients greater than 0.99, 
which is superior to the results achieved using partial least squares regression (PLSR) and principal 
component regression (PCR) techniques [10]. Tang et al., [14] employed surface-enhanced Raman 
spectroscopy (SERS) coupled with convolutional neural networks (CNN) and radiofrequency (RF) 
models to identify bacterial contamination in meat and dairy products, achieving an accuracy rate 
greater than 98% [14]. 

The hyperspectral imaging coupled with deep learning techniques to identify pesticide residues 
in grapes, achieving a performance measure greater than 93% [5]. Collectively, these reports 
demonstrate the efficacy of coupling spectroscopy with machine learning for detection as well as 
quantitation and classification of complex food contaminants with high sensitivity and specificity. 

The union of spectroscopy and ML is a revolution in food safety assessment. Spectroscopy offers 
rapid, portable, and scalable data acquisition, while machine learning offers interpretability, 
predictive improvement, and the ability to automate [15]. Combined, these technologies offer a 
platform to identify contamination in real time and enable proactive and reactive control in food 
safety. The platforms are being investigated for a range of applications ranging from automatic 
detection of microbial contaminants in raw meat to pesticide residue analysis on fruits and 
vegetables, and detection of concealed adulterants in beverages. Edge computing and embedded 
machine learning models enable real- time analysis on portable platforms, such as handheld 
spectrometers and smart sensors. These technologies can transform field inspections, customs 
testing, and even consumer testing. 

Despite highly sophisticated work, numerous challenges remain. The generalization of models to 
large populations of food types, standardization of preprocessing procedures, instrument-to-
instrument calibration transfer, and need for large, annotated datasets are significant challenges. 
Interpretability and transparency of deep learning models, or "black boxes," as regulatory agency 
acceptance issues. These will be met through cross-disciplinary effort involving food science, 
analytical chemistry, data science, and policy [16,17].   

Concurrent with developments in food safety, the intersection of sensor-based and spectroscopy-
based technologies has shown vast transformative capabilities in environmental monitoring. In our 
previous contribution, we conducted a comprehensive review of these techniques for real-time 
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determination of water quality in freshwater aquaculture systems with an emphasis on their 
application in the detection of critical physicochemical parameters such as pH, dissolved oxygen, and 
ammonia using traditional sensors as well as spectroscopic techniques [18]. The insight gained here 
from that field underscores the versatility of spectroscopy over a wide range of application fields and 
presents a conceptual framework for extrapolating similar methodologies to food contamination 
analysis. This review thus builds on that established platform to explore the nexus of spectroscopy 
and machine learning in food safety monitoring. 

This review seeks to provide a thorough overview of the status and future direction concerning 
the conjunctive use of spectroscopy and machine learning for food contamination analysis. The basic 
principles and operation of the most used spectroscopic methods are described. The machine 
learning algorithms used to analyse spectral data and their applications in different types of 
contamination, including microbial, chemical, physical, and toxin-based threats, are documented. 
This study places specific emphasis on recent post-2020 publications, thereby enumerating recent 
developments in this area. In addition, the review accounts for typical challenges and elaborates on 
emerging trends, including explainable artificial intelligence, hybrid sensor systems, and open-access 
spectral databases [19]. In general, this review seeks to provide researchers, practitioners, and 
policymakers with an informed perspective regarding the potential and limitations of applying these 
technologies in real food safety environments. 
 
2. Spectroscopy Techniques in Food Contamination Detection 
 

Spectroscopic methods have become leading analytical tools in modern food safety analysis 
because they can offer rapid, non-destructive, and chemically non-intrusive analysis. Spectroscopic 
methods are based on the investigation of interaction of the food constituents with electromagnetic 
radiation and hence offer spectral information defining the molecular structure, chemical bonding, 
and structural characteristics. Quality and nature of the spectral information offered are a function 
of the applied technique with each offering different advantages based on the matrix, type of 
contamination, and sensitivity needed. The following are the major spectroscopic methods used to 
analyse food contamination, how they work, the type of spectral information, and food safety 
applications [19-21].  

Near-infrared (NIR) spectroscopy exploits the absorption of electromagnetic radiation between 
780 and 2500 nm by molecular combination bands of vibrations and overtones, for example, O–H, 
C–H, and N–H bonds. Its advantages, for example, penetration deep into the material, minimal 
sample preparation requirements, and short analysis times, have resulted in increased use of NIR in 
the food sector, increasingly used to determine quality parameters like moisture, protein, and fat 
content, as well as to detect adulterants and contaminants. The overlapping and broad application 
of NIR spectra make manual interpretation time-consuming. To circumvent this, preprocessing 
operations such as multiplicative scatter correction (MSC), standard normal variate (SNV), and 
derivative transformation are used to eliminate noise and baseline drift. Coupling with Machine 
Learning (ML) models improves the discriminability of the NIR so that subtle chemical differences in 
multispectral food matrices can be detected. NIR coupled with support vector machine (SVM) and 
artificial neural network (ANN) for aflatoxin and antibiotic residues analysis in milk and cereal 
commodities and recorded high classification performance [22].  

Fourier transform infrared (FTIR) spectroscopy utilizes mid-infrared radiation (4000–400 cm⁻¹) to 
measure the fundamental vibrational transitions of the molecular bonds, resulting in sharp and 
characteristic spectral peaks. This molecular fingerprinting capability allows FTIR to provide in-depth 
information on the presence of target chemical compounds and thus is very valuable for the 
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identification of food adulterants and chemical residues. FTIR spectra are more chemically resolved 
and selective than NIR spectra but water sensitive. Baseline correction, smoothing (e.g., Savitzky–
Golay), and normalization preprocessing steps are required for reproducibility [23]. Recent 
application included the integration of FTIR and deep learning for end-to-end predictive models. Joshi 
et al., [10] used FTIR and 1D convolutional neural network (1D-CNN) for the identification of 
melamine and cyanuric acid in pet food with R² values greater than 0.99 [10,14]. RF to identify 
bacterial contamination in meat and dairy products and attained classification accuracies of >98% 
[6]. These examples illustrate the capability of FTIR to conduct high resolution contaminant detection 
with the application of advanced ML approaches 

Raman spectroscopy detects the inelastic scattering of monochromatic light upon collision with 
molecular vibration. In contrast to IR absorption methods, Raman spectroscopy detects information 
relevant to molecular polarizability and is optimally used for the analysis of low-moisture food and 
aqueous systems. The method yields well-defined and narrow peaks that enable highly specific 
detection of compounds, e.g., microbial and chemical contaminants. Surface enhanced Raman 
spectroscopy (SERS) amplifies the weak Raman signal so that trace levels become detectable even in 
complicated matrices [24] . Deep convolutional neural network models to raw Raman spectra to 
identify bacterial contamination with a detection rate of about 100% [25]. Raman's high specificity 
and ML ability to identify patterns make it beneficial for on-site and laboratory-based food safety 
analysis. 

Hyperspectral imaging (HSI) is a fusion of traditional spectroscopy with digital imaging, which 
generates a three-dimensional data cube of spatial and spectral information. Each pixel contains a 
full spectrum, enabling chemical identification and contaminant localization on food surfaces. HSI is 
very well suited for surface-level defect inspection, mold, bruising, and contamination of fruits, 
vegetables, and meat. It generates humongous high-dimensional datasets that require 
dimensionality reduction methods, e.g., PCA, t-SNE, or CARS, prior to ML model classification. HSI 
and convolutional neural networks (CNNs) to identify pesticide residues in grapes with a classification 
accuracy of over 93% [5]. Likewise, Ekramirad et al., [26] employed HSI and gradient tree boosting to 
classify insect infestation in apples with 97.4% accuracy. How HSI, in combination with ML, enables 
efficient detection of microbial and chemical contamination of foods [27]. 

Ultraviolet-visible spectroscopy operates within 200 to 800 nm light wavelengths. Ultraviolet-
visible spectroscopy is since ultraviolet and visible radiation is absorbed by colored compounds in 
foods. Ultraviolet-visible spectroscopy is primarily applied to investigate electronic transitions and is 
more efficient in the detection of coloured compounds such as pigments and polyphenols with 
distinctive absorption profiles in the UV-Vis. UV-Vis spectroscopy is typically applied to identify 
adulterants as well as to verify color alteration due to oxidation or spoilage. The analysis is also 
applied to verify if food products such as juices, oils, wine, and spices are authentic. Vibrational 
spectroscopy methods, such as UV-Vis, for detecting milk product adulteration. The authors pointed 
out the effectiveness of UV-VIS spectroscopy in the detection of changes in composition and quality 
differences by examining spectral patterns in the visible and ultraviolet region [28]. Although less 
molecular-specific than FTIR or Raman spectroscopic techniques, UV-VIS spectroscopy is still a 
potential candidate due to the ease of use, the rate of data acquisition, and field-portable instrument 
compatibility. 

Fluorescence spectroscopy is based on the phenomenon of luminescence of a compound on the 
absorption of visible or ultraviolet light. The analytical method is highly sensitive and is able to 
quantify naturally fluorescent and labelled analytes in very trace amounts. Nan et al., [6] discussed 
the use of fluorescence-based methods for determining ochratoxin A and patulin mycotoxins in fruit 
samples. A label-free, fluorescence amplified electrochemical apt sensor for the determination of 
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paraquat residues in vegetable samples, thus developing an ultra-sensitive and selective detection 
system most suitable for field testing [4]. These studies collectively illustrate the growing relevance 
of fluorescence and UV-Vis spectroscopy in food contaminant tracking, particularly when coupled 
with machine learning methods for quantitative determination and classification. 

These spectroscopic methods provide an array of equipment for detecting contaminants in 
different food categories. For example, HSI allows for non-destructive screening of fruits, whereas 
FTIR and Raman spectrometry analyse adulterants at the molecular level. Their use depends on food 
matrix complexity, nature of the contaminant, requirement of sensitivity, and working range.  If used 
along with sophisticated machine learning algorithms, their analytical capability is further increased 
to screen out the contaminants in real-time, high-throughput, and high accuracy throughout the 
entire food supply chain. 

Fig. 1. Schematic representation of major spectroscopic techniques used in food contamination detection 
 

3. Machine learning  
 

The union between spectroscopy and machine learning (ML) has revolutionised food safety 
analysis, allowing sensitive, fast, and non-destructive identification of contaminants at near real-
time. Although several spectroscopic methods near-infrared (NIR), Fourier-transform infrared (FTIR), 
Raman, ultraviolet-visible (UV-Vis), and hyperspectral imaging (HSI) can provide chemical and 
physical information from food matrices, the application of powerful computing capacity is needed 
to realize the maximum benefits of these methods [34]. Raw spectral data provided by these 
methods are by nature high-dimensional consisting of thousands of variables that are highly 
correlated to describe reflectance or absorbance at many wavelengths. In addition to this, data are 
influenced by noise, baseline drift, light scattering, environmental variability, and instrument 
variability and therefore are hard to interpret. 
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To solve such problems, linear chemometric methods, including principal component analysis 
(PCA) and partial least squares regression (PLS-R), have been conventionally employed [29]. These 
are nonetheless linear assumption-based methods and might fail to capture the nonlinear, complex 
dynamics of real spectroscopic data. With increasingly complex food matrices and increasingly 
complex contaminants from microbial, chemical, and physical adulterants, there is equally an urgent 
demand for equally accurate but also flexible, scalable, and capable of learning hierarchical 
representations directly from raw inputs. Machine learning has proven to be a suitable framework 
for the above demands, facilitating automated pattern recognition, anomaly detection, and 
measurement with minimal or no human intervention [30]. Developments in the last decade in deep 
learning (DL), including convolutional neural networks (CNNs), support vector machines (SVMs), 
random forests (RF), and ensemble methods, have proven to provide better performance in 
spectroscopic applications compared to traditional methods. The models particularly excel in 
recovering information from large, complex data, detecting weak spectral signatures of 
contamination that would be undetectable to human experts, as well as traditional algorithms [31] 
[32]. 
      Applications of ML to food spectroscopy span the entire data pipeline, from signal preprocessing 

and feature selection to model training and performance estimation. Preprocessing operations 
attempt to denoise and normalize the spectral input to minimize the impact of external and 
instrumental variability. Feature selection techniques specify the most discriminatory wavelengths 
or bands of spectral data that are useful for discrimination or prediction. Classification models are 
trained to separate contaminated and clean samples, and regression models are employed to predict 
contaminant levels or degradation levels. Finally, rigorous model validation ensures robustness, 
generalizability, and acceptability for regulatory use in food inspection pipelines [33]. 

This section provides each part of the ML pipeline within the context of spectroscopic data for 
food contamination detection. Particular focus is on recent developments, best practice in 
methodology, and application-specific challenges, following recent empirical studies and overall 
reviews post-2021. By the overview of each step in the ML pipeline, this review aims to provide 
researchers and practitioners with a clearer idea of how such methods facilitate the development 
of next-generation food safety diagnostics that are not only accurate and trustworthy but also    field-
deployable, scalable, and interpretable. 
 
3.1 Preprocessing  
 
     Preprocessing is a critical step in the application of machine learning (ML) algorithms to          
spectroscopic data analysis in food safety, for example. Food sample spectra obtained through 
methods like near-infrared (NIR), Fourier-transform infrared (FTIR), Raman, or hyperspectral imaging 
(HSI) will typically contain redundant variability in the form of distortions. This variability will 
commonly take the form of random noise, baseline drifts, effects of light scattering, and inter-sample 
variability as a function of parameters like moisture content, surface roughness, or compositional 
heterogeneity. Without preprocessing, such differences will dampen weak but meaningful chemical 
signatures, thus undermining the effectiveness and integrity of ML models [34]. 

To have coherence and to increase detection of informative signal, researchers apply 
preprocessing techniques like Standard Normal Variance (SNV) and Multiplicative Scatter Correction 
(MSC) to eliminate the influence of path length and scatter, particularly with powdered or irregular 
samples. Savitzky Golay filtering is also commonly applied to enhance spectral information by 
reducing high-frequency noise without diminishing peak shape integrity. First- and second-order 
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derivatives are utilized for improving peak features, facilitating deconvolution of overlapped spectral 
bands, and eliminating baseline drift [35]. 

One such recent systematic study highlighted the importance of preprocessing in the majority of 
machine learning efforts in the identification of mycotoxins and other food adulterants. The review 
showed that more than 85% of published research employed preprocessing methods, and models 
trained on raw spectra were always inferior to those trained on pre-processed data [36]. Specifically, 
the use of SNV, derivatives, and PCA dependent dimensionality reduction was linked to the optimal 
classification accuracy in studies conducted with FTIR and NIR spectra In in-line or handheld food 
analysis applications, where operator-dependent sensor calibration variation, illumination, and 
control are larger, standardized preprocessing is mandatory. As ML-based spectroscopic technology 
is more widely applied in non- laboratory settings, high-quality preprocessing pipelines will be 
necessary to ensure model accuracy, interpretability, and acceptability to regulators. Some newer 
architectures have also built in automated preprocessing algorithms, where optimal transform 
selection is dynamically determined based on the properties of the dataset  a fast-growing area of 
interest for making ML workflows more scalable and less human-optimization dependent [37]. 

 
3.2 Feature Selection 

       The most critical steps in the analysis of spectral data are feature extraction and selection 
followed by preprocessing. Because spectroscopic data typically contain hundreds or thousands of 
variables, each a unique wavelength or frequency, the most critical feature is dimensionality 
reduction without information loss related to food contamination. Not only does this enable 
computationally efficient and better-performing models, but also generalizability and minimization 
of overfitting. Of the older techniques, PCA is mostly used to project data into a lower-dimensional 
space without losing most of its variance. PCA is useful for exploratory data analysis and visualization 
but is an unsupervised method and will not necessarily select the best features for a specific 
classification or regression problem. More advanced techniques, such as competitive adaptive 
reweighted sampling (CARS), successive projections algorithm (SPA), and recursive feature 
elimination, have been proposed to address this by picking variables on the basis of correlation with 
class labels or response variables. These are especially useful when diagnostic information is carried 
only by thin wavelength bands, an issue commonly faced in adulterant detection or microbial 
contamination research [38]. A case in point is within their evaluation of hyperspectral imaging in 
food microbiology, where the necessity of dimensionality reduction to prevent the curse of 
dimensionality inherent in spectral imaging systems. From their findings, feature selection methods 
not only reduce the computational burden but also lead to more robust model performance when 
coupled with machine learning classifiers such as SVMs or random forests (RFs). The past decade has 
seen improvements in the deep learning framework give rise to end-to-end architectures such as 
convolutional neural networks (CNNs), which learn hierarchical spectral representations from lightly 
processed data. This is revolutionary since it eliminates hand-engineered feature selection and can 
lead to better accuracy with big data. In food safety applications that still remain dominated by small 
data, traditional feature selection routines remain the dominant choice since they are interpretable 
and can result in identification of specific chemical markers. The selection of using traditional vs. deep 
learning-based feature extraction is thus a function of the specific analytical setup, data availability, 
and interpretability vs. the performance trade-off [39,40]. 
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 3.3 Classification Algorithms 

Following feature extraction, classification models are the core component of the majority of 
machine learning (ML) applications to spectroscopic food contaminant analysis. The models are 
trained to distinguish between classes such as "contaminated" vs. "noncontaminated" samples or 
between specific microbial strains or adulterants. Of the classical models, support vector machines 
(SVMs) are especially popular as they are capable of handling high-dimensional and nonlinear data 
with the aid of kernel functions. They are also resilient, even with relatively small datasets, and are 
less prone to overfitting [41]. Likewise, k-nearest neighbors (k-NN) offer an easy-to-implement 
solution for local proximity-based classification in feature space but are not robust and prone to noise 
and irrelevant features [42]. Ensemble models such as decision trees and random forests (RFs) are 
widely employed for their robustness and interpretability; RFs, in turn, calculate the mean of the 
output of numerous trees to reduce variance and enhance generalization. More advanced models 
such as artificial neural networks (ANNs) and convolutional neural networks (CNNs), are capable of 
extracting the nonlinear relationships regardless of manual feature selection. CNNs, especially in 
their 1D and 2D implementations, have been effectively employed to directly process spectral and 
hyperspectral data. For instance, in a recent study, Liu et al., [39] employed CNNs for tea quality 
classification via near-infrared spectra, with enhanced performance compared to conventional 
classifiers, demonstrating the growing applicability of deep learning models to food analysis [43]. 

3.4 Regression Algorithms 

      Apart from classification, most spectroscopic machine learning applications in food safety are 
quantitative prediction, such as quantitation of contaminant concentration or extent of spoilage. 
Regression models are the target for these. Partial least squares regression (PLSR) has been the most 
prevalent chemometric tool employed for spectroscopic quantitation for the last two decades. PLSR 
is ideally suited to linear modeling of target output against spectral input even when there is 
multicollinearity [44,45]. For handling nonlinearity and higher-order interactions, however, more 
sophisticated regression techniques have come to the fore. Support vector regression (SVR), a direct 
extension of support vector machines to continuous output variables, has also gained popularity 
considering robustness and insensitivity to outliers. Neural network-based regression is also highly 
promising, especially in deep learning models. For example, a recent review of infrared spectroscopy 
in food safety applications highlighted the following case studies: one used second derivative 
preprocessing of near-infrared spectra for pesticide residue quantitation in strawberries and cabbage 
using PLSR and LS SVM. Predicted prediction correlation coefficients (RP) were above 0.93 with a root 
mean square error of prediction (RMSEP) below 3.22 mg kg⁻¹, while LS SVM was superior to PLSR, 
highlighting the advantages of nonlinear regression in complex matrices. These studies indicate that 
while PLSR remains of interest, the application of nonlinear regression techniques can deliver high 
accuracy, especially in applications involving chemically heterogeneous composition or trace-level 
analytes [22]. With more stringent food safety laws and sample heterogeneity, the application of 
strong regression models based on high-quality spectral data has become an imperative for 
quantitative, accurate food contaminant analysis. 

3.5 Model Evaluation Metrics 

      To ascertain the performance and reliability of such models, strict performance metrics have to 
be employed. For classification, some of the most widely employed metrics include accuracy, 
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sensitivity (true positive rate), specificity (true negative rate), and precision, and F1 score. Accuracy 
provides an overall success rate, while sensitivity and specificity provide specific interest in food 
safety contexts where false negatives (i.e., failure to identify a contaminant) are of particular concern. 
For regression models, evaluation can include the root mean square error (RMSE), mean absolute 
error (MAE), and coefficient of determination (R²). These assess the quality of the predicted values 
against true measurements [46]. NIR spectroscopy coupled with random forest classification, which 
was 97.7% accurate on the test set. They also employed Support Vector Regression (SVR) for the 
prediction of adulterant content, R² > 0.98, RMSE < 1.7%, which showed the model's accuracy for 
both classification and quantitative uses. Their study is an outstanding example of good practice in 
model validation, e.g., the application of k-fold cross-validation and the application of more than one 
metric of performance to render models robust and deployable in food safety contexts [18]. The 
figure 2 below shows the key steps in the process of applying machine learning methods in 
spectroscopic food analysis. 
 

 
Fig. 2. Machine learning pipeline for spectroscopic food contamination analysis 
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4. Integration of Spectroscopy and Machine Learning: Applications In Food Contamination 
Detection 
 
       Spectroscopy combined with machine learning has transformed food contaminant analysis to 
produce fast, non-destructive, and scalable methods that supplant the traditional assays. The 
analytical power of spectroscopic platforms typically limited by noise, high dimensionality, and non-
linearity is significantly improved when coupled with ML methods capable of extracting latent 
features and recognizing discriminative patterns. In our earlier work, we explained how Wireless 
Sensor Networks (WSNs) and Internet of Things (IoT)-based systems can facilitate smart, real-time 
monitoring of the environment in agriculture, aquaculture, and smart cities. The results on energy-
efficient data acquisition, wireless communication, and sensor deployment strategies provide a 
relevant background for the implementation of similar smart monitoring systems in the application 
of food safety applications, particularly in the integration of spectroscopy and machine learning 
models. This section offers a critical overview of the use of such hybrid platforms in solving microbial, 
chemical, and physical contamination problems in a broad range of food matrices. Recent studies 
between 2023 and 2025 have demonstrated advancements in model structure, spectral 
preprocessing, and data fusion techniques. A concise table is presented at the end of this section.  
 
4.1 Microbial Contamination 

        Food contamination by microbes is the biggest food safety issue in the world. The most prevalent 
foodborne illness causing microbes are Escherichia coli, Salmonella, and Listeria monocytogenes. 
Culture- or quantitative polymerase chain reaction-based detection platforms are now being 
drastically expedited and field-deployed through the help of spectroscopic sensors and ML pipelines 
[8]. 
        In 2024, Wisuthiphaet et al., [47] used a bacteriophage-induced excitation–emission matrix 
(EEM) fluorescence spectroscopy method to find E. coli in spinach homogenate. Their work 
demonstrated that phage-induced spectral changes—indirect indicators of bacterial presence—were 
accurately described by a Gaussian Process classifier with more than 92% classification accuracy at 
bacterial concentrations as low as 10² CFU/mL [47]. This was achieved with only six important 
wavelengths, selected based on feature importance ranking, and thus eliminating spectral 
redundancy and allowing for deployment on low-resolution, miniaturized optical devices. These 
advancements demonstrate that the incorporation of spectral fingerprinting into traditional machine 
learning models enhances the sensitivity of real-time food safety measurements. 
       In deep learning, a multi-scale convolutional neural network (CNN) for Salmonella serovar 
classification from Raman spectral data. Preprocessed spectra through Savitzky–Golay smoothing 
and normalized using standard normal variate (SNV) were employed as input to the CNN, which 
consisted of hierarchical convolutional layers optimized for the extraction of local vibrational peaks 
as well as more general spectral pattern. The model was confirmed to be approximately 98.4% 
accurate and was also significantly robust against baseline drift, demonstrating the application of 
deep spectral structures to classification problems of high complexity [48].confocal micro-Raman 
spectroscopy to perform one of the largest pathogen identification trials. The research enhanced 
computational efficiency by integrating classic classifiers such as support vector machines (SVM) and 
random forests (RF) with that of CARS-SPA feature selection, optimally thus enhancing the input 
feature space. Importantly, it employed Shapley Additive Explanations (SHAP) to determine which 
Raman shifts had the greatest impact in classification, thus evading the long-standing issue of 
machine learning "black box" behavior in regulatory contexts. This degree of transparency is an 
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important step towards the application of ML-spectroscopy tools towards developing actionable and 
auditable diagnostic protocols [49]. 
    Collectively, these studies recognize both the utility and growing maturity of machine learning-
based spectroscopic methods in microbial contamination analysis. In addition, they demonstrate a 
clear evolution from simple SVM models to increasingly complex explainable and deep learning 
models capable of distinguishing different pathogens with little preprocessing necessary. 
 
4.2 Chemical Contamination 
      

Trace amounts of chemical food pollutants such as pesticide residues, veterinary medications, 
and heavy metals are of significant toxicological interest even at trace concentrations. Food 
chemometrics' use of non-destructive identification of these contaminants has been a long-standing 
dream, and the developments in spectroscopic instrumentation complemented by its ML models 
have well advanced the limits of what is possible [50]. 

The short-wave infrared hyperspectral imaging (SWIR-HSI) for the detection of pesticide residues 
on the surface of Hami melon. The model used a 1D convolutional neural network (1D-CNN) that 
used spatial and spectral information, hence capable of sensing chemical absorption and 
microstructural parameters that signified contamination. Background correction, median filtering, 
and normalization were the preprocessing methods adopted that rendered the performance of the 
model to be insensitive to changes in ambient light. The resulting model achieved classification 
accuracies of approximately 94%, which is comparable to traditional chromatography techniques, 
but without the need for any reagents or sample destruction [51]. 
      Though classification might be necessary, chemical analysis will usually demand quantitation, 
determining the levels of concentration of the impurities. These models, including partial least 
squares regression (PLSR), Support Vector Regression (SVR), and Multilayer Perceptrons (MLPs), have 
functioned according to this trend [52]. For instance, Ye et al., [5]  showed the application of 
hyperspectral imaging (HSI) for pesticide grape residues discrimination using support vector 
machines (SVM) and convolutional neural networks (CNN). Their models' accuracy range was 93.3% 
to 97.2% depending on the fruit variety type and the spectral preprocessing methods applied. While 
regression analysis as such was not employed in their article, most recent papers on pesticide 
quantitation by near-infrared (NIR) and Raman spectroscopy typically report R² values > 0.90 with 
root mean square error of prediction (RMSEP) values < 2 mg/kg when feature selection methods like 
variable importance in projection (VIP) and genetic algorithms (GA) are applied. Whether the models 
can be transferred across fruit types is being investigated. Some authors have begun to tinker with 
transfer learning—train on one fruit, test on another with some success, progressing to more general 
contamination sensors [53]. 
     In conclusion, chemical contamination analysis has come a long way from the conventional static 
lab testing to more dynamic, mobile, and intelligent systems that can make binary classification as 
well as quantitative prediction. Hybrid deep learning algorithms, particularly with spatial contexts. 
 
4.3 Physical Contamination and Adulteration 
 

Identification of these physical impurities, such as plastics, bone, stones, and insect material, by 
conventional optical inspection systems is challenging owing to their varied morphology and close 
spectral resemblance to the food matrix [54]. 
      The integration of spectroscopy with object-detection-based machine learning algorithms has 
enabled novel means of real-time and non-destructive physical contamination screening. 
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A 2023 paper on chili peppers employed Vis-NIR imaging with pixel-wise classification (with SVM and 
RF) and subsequent object-level detection with YOLOv5. The proposed system achieved 86%-pixel 
classification accuracy and 96% object detection accuracy, which are appropriate for conveyor belt 
automation in factory sorting lines. Of particular interest, the paper emphasizes the importance of 
hybrid pipelines where spectral segmentation comes before object recognition, enhancing 
interpretability and minimizing false positives [55]. 

The challenge of detecting small, heterogeneous foreign contaminants in chicken meat using a 
semi-supervised Generative Adversarial Network (GAN) model trained with a 1D U-Net from near- 
infrared (NIR) spectral information. In contrast to supervised methods that need large, annotated 
datasets, their approach allowed the model to learn spectral representations from pure data directly 
while identifying labelled anomalies as potential contaminants. The model achieved a high F1-score 
of 96.8% and demonstrated good generalization capability for new object types. This new method 
reduces the annotation cost and is particularly well-suited to scenarios with high contamination 
uncertainty [56]. 
      These principles in rice food processing operations. They proposed a new YOLOv-MA (multi-scale 
dilated attention) framework, which resulted in a 5%–11% mAP increase over the traditional YOLOv5 
in the detection of contaminants such as husk fragments and soil dust. Their research underscores 
the imperative to develop adaptive architectures that are capable of learning across multiple spatial 
resolutions a concern of growing significance to many food matrices [57]. 

Vis-NIR HSI to detect minced meat adulteration, or beef-chicken mixing. Spectral-spatial 
transformation and SVM classification resulted in 94.9% accuracy. The application of this technique 
highlights the increasing feasibility of spectral fingerprinting in combating economically motivated 
adulterationa large compliance issue in developed and emerging economies [58]. 
 
4.4 Application across Food Matrices 
 

 Apart from the type of contamination, spectroscopy–ML integration performance also greatly 
depends on physical and chemical properties of the target food matrix. Water content, for instance, 
surface roughness, biochemical composition, influences the quality of the spectrum and model 
performance [59]. 
        In highly aqueous foods such as meat and milk, overlapping bands of water absorption and 
scattering effects make analysis challenging. however, demonstrated the effectiveness of short-wave 
infrared hyperspectral imaging (SWIR-HSI) with a 1D convolutional neural network (CNN) in the 
identification of Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus on mutton 
surfaces. Its success was thanks to sophisticated spectral preprocessing, i.e., the use of first-
derivative transformations and continuum removaland the capacity of the CNN model to learn 
features irrespective of changing moisture conditions. The system was capable of generating a 
classification accuracy of approximately 98.6%, vouching for its credibility and its potential in meat-
processing facilities [60]. 
        Fermentation products are challenging since their composition varies with time. Inception-based 
2D-CNN model with NIR spectra of bacterial broth as the training dataset. Their model yielded R² ≈ 
0.90 and RMSE ≈ 0.52 in the estimation of the total viable counts (TVC). The utilization of inception 
modules, which have the capability to process multiple receptive fields in parallel, allowed the model 
to learn across batch conditions and thus be usable for in-line quality control [61]. 
       Together, these pieces of work demonstrate that model building and preprocessing will need to 
be modified not only to the type of contamination but also to the matrix-dependent optical response. 
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Next-generation systems will probably incorporate adaptive algorithms that are capable of self-
calibrating to changing food environments. 
Recent uses of spectroscopy and machine learning for food contamination detection are outlined in 
Table 1. 
 
Table 1 
Summary of recent studies integrating spectroscopy and machine learning in food contamination detection  

Contamination 
Type 

Food Matrix Spectroscopy 
Technique 

ML Model Performance Reference 
(Year) 

Microbial 
(E. coli) 

Spinach 
homogenate EEM fluorescence 

SVC, RF, 
Gaussian 
Process 

Accuracy > 92 % [62,63] 

Salmonella 
serovars 

Bacterial 
isolates 

Raman 
spectroscopy Multi-scale CNN Accuracy 

~ 98.4 % [64,65] 

Mixed pathogens 
(9 types) 

Bacterial 
isolates 

  Confocal 
microRaman 

SVM, RF + 
CARS-SPA + 
SHAP 

Accuracy 
~ 98.9 % [19] 

Chemical 
(pesticides) Hami melon SWIR-HSI  1D-CNN +    

fusion Accuracy ≈ 94 % [20] 

Physical (foreign 
objects) Chili peppers Vis-NIR HSI + 

YOLOv5 
RF, SVM, 
YOLOv5 

Pixel 86 %, 
Detection 96 % [21] 

Physical (foreign 
matter) Poultry breast 

NIR-HSI + 
Semi-supervised 
GAN 

1D U-Net + GAN F1-score 96.8 %, 
Accuracy 96.5 % [22] 

Physical (foreign 
objects) 

Rice 
production 

Vis-NIR imaging + 
YOLOv-MA YOLOv-MA +5–11 % mAP 

gain [23] 

Adulteration 
(meat) Beef mince Vis-NIR HSI 

SVM + 
spectral 
transformati
on 

Accuracy 94.9 % [24] 

Microbial 
(pathogens) Mutton SWIR-HSI PLS-DA, SVM, 

RF Accuracy 94.3 % [25] 

Quantitative 
microbial load 

Fermentation 
broth NIR spectroscopy Inception 2D-

CNN 
R² ≈ 0.90; RMSE 
≈ 0.52 [26] 

 
Despite significant progress in the integration of spectroscopy and machine learning (ML) for 

food contamination detection, a number of sophisticated and interrelated challenges remain to 
stand in the way of their advancement from laboratory research to practical and scalable 
deployment [62]. These challenges are not merely technical hurdles—such as equipment 
variability, data dimensionality, and algorithmic computational expense—but also more general 
infrastructural and regulatory hurdles. The integration of spectroscopy with ML often entails the 
analysis of high dimensional noisy data from various food matrices, each having unique chemical 
and physical characteristics dictating spectral behaviour. Additionally, the sensitivity of 
spectrometric response to the environment, operator handling, and equipment configuration 
presents a further layer of complexity that must be successfully navigated by ML models. This 
challenge is extremely problematic when models are deployed over many instruments or 
geographic locations, where no standardization is the norm. Additionally, the dependence of 
machine learning models on the quantity and quality of annotated training data is extremely 
high. For food, the collection of large and diverse annotated datasets is not only time consuming 
but is also constrained by the food samples’ perishable nature and diversity. Algorithms that 
show robust performance under laboratory-controlled conditions fail to generalize in industrial 
or field settings. Additionally, the lack of standard acquisition protocols, the computational 
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expense of real-time execution on edge hardware, model interpretability, and regulatory 
clearance are all present formidable challenges [63]. Addressing these multifaceted challenges is 
necessary to fully realize the potential of spectroscopy-ML systems in facilitating scalable, 
accurate, and non-invasive solutions for the next generation of food safety monitoring. 
 
5. Challenges in Integration  
 

One of the primary and most common problems in the machine learning-spectroscopy 
integration for the detection of food contamination is high spectral variability due to intrinsic and 
extrinsic variables. Food matrix spectra are parameters that depend on moisture content, texture, 
color, and particle size distribution. e.g., in NIR and MIR spectroscopy, samples with high water 
content (e.g., fresh meat, vegetables, or fruit) yield strong water absorption bands, which mask 
underlying detail about contaminants. Surface roughness heterogeneity of contaminant scattering 
and distribution artifacts, especially with diffuse reflectance methods, also cause baseline shifts. 
Extrinsic sources like instrument calibration, non- uniform illumination source, and non-uniform 
ambient experimental environmental conditions (e.g., temperature or humidity) also add to the 
problem. Minor variations in the incidence angle, path length, or sample position can add to 
nonreproducible spectral profiles. These changes significantly reduce the robustness and 
reproducibility of the machine learning models trained on such spectra, especially when such models 
are implemented using different instruments or sample acquisition geometries [64]. When the same 
preprocessing protocols, e.g., standard normal variate (SNV) and multiplicative scatter correction 
(MSC), were employed, model transfer of NIR models from one miniaturized device to another 
resulted in a catastrophic loss of classification accuracy. The observation underscores the critical 
importance of advanced calibration transfer methods, spectral standardization protocols, and 
standardized acquisition protocols to guarantee device-agnostic MLspectroscopy pipeline 
performance under a wide range of operating conditions [65]. 

Another persistent issue is the high dimensionality of spectral data and the consequent risk of 
overfitting, especially when working with small or sparsely distributed datasets. Hyperspectral 
imagery and spectral data are normally liable to contain hundreds or thousands of bands, most of 
which are redundant or collinear. Redundancy is computationally costly and increases the risk of 
fitting noise instead of an informative signal. Dimension reduction techniques such as PCA, variable 
selection techniques such as competitive adaptive reweighted sampling (CARS) and genetic 
algorithms (GA- SPA) are commonly employed, but their performance is normally outshone by 
natural variability and noise in the data. This issue is much more pronounced in deep learning models 
such as CNNs, where they need vast amounts of training data to prevent memorization of patterns 
corresponding to individual batches or environments [66,67].In their work on monitoring 
fermentation operations, The robust initial performances (R² ≈ 0.90, RMSE ≈ 0.52) with NIR spectra-
trained CNN models. The models, however, had a sharp decline in performance about 10% when 
they were tested on unseen batches, even after the use of the same instrumentation and 
preprocessing protocols. This situation indicates the burning need for mechanisms such as cross-
batch normalization, data augmentation, dropout regularization, and domain-invariant learning to 
provide the robustness and reproducibility of models in different conditions [61]. 

Overfitting is also directly related to the lack of well-defined standard operating procedures for 
data collection, preprocessing, and metadata documentation, which severely hinders reproducibility 
across different laboratories and institutions. Additionally, spectroscopic workflows also have 
inconsistencies in details that might appear minor; however, these parameters are more important—
such as the choice of spectral range, resolution parameters, illumination geometry, sample thickness, 
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and background correction techniques—each introducing variability that influences model 
transferability. Additionally, preprocessing methods used on raw spectral data differ in studies 
seldom [68]. The variations in ambient light and sample handling could alter classification accuracy 
in portable FTIR instruments regardless of concealed sample types. In most instances, critical 
metadata concerning acquisition conditions, instrument calibration, and preprocessing protocols are 
not recorded and render replication of published results impossible. Such a condition calls for 
universally accepted spectral data standards and reporting protocols, including the FAIR principles 
(Findability, Accessibility, Interoperability, and Reusability), to enhance collaborative spectral data 
sharing and cross-validation among various laboratories [69]. 

The use of spectroscopy–machine learning systems in field-portable or edge devices presents 
new challenges of sensor performance, algorithmic speed, and real-time responsiveness [70]. In 
contrast to high-spectral resolution laboratory-based spectroscopic instruments with abundant 
computational resources operating in controlled environments, field-portable instruments need to 
cope with severe compromises. Miniature spectrometers are beset by low dynamic range, low 
signalto-noise ratios, and limited spectral bands, which compromise their sensitivity to trace-
abundance analytes. As an additional challenge, the use of machine learning models in these devices 
necessitates extensive algorithmic fine-tuning since onboard processors are incapable of executing 
standard convolutional neural network (CNN) models or ensemble methods without suffering the 
penalty of compromised latency or overheating. In a recent article, A portable spectroscopic platform 
with on-device convolutional neural networks (CNNs) for real-time prediction of moisture and 
protein content in raw cereals [71]. The method showed the applicability of TinyML models for fast 
quality inspection in field settings; however, the system also showed subtle decreases in predictive 
accuracy compared to benchscale analysis, especially in variable optical density samples. The results 
illustrate the unavoidable performance– portability tradeoff, where mobility and real-time access 
optimizations come at the price of compromised analytical accuracy. To limit this gap, future research 
should explore hybrid architectures that bridge local feature extraction on edge devices with secure, 
low-latency cloud-based inference without sacrificing speed while preserving spectral fidelity. 

The greatest and perhaps most challenging task is the machine learning model generalizability to 
generalize across diverse food matrices, contaminant types, and operating conditions. Models are 
good when trained and tested on one matrix (e.g., apples or grapes); however, accuracy is noted to 
be decreased upon expansion to other food materials due to variations in spectral characteristics. 
The variations occur as a result of variations in texture, water content, pigment, or chemical 
characteristics. Calibration transfer and domain adaptation techniques seek to close this gap by 
transferring models from small new-domain sets [72,73]. The investigated transferability of NIR-
based SSC models among strawberries, grapes, and apples using calibration transfer techniques such 
as PLS correction and semi-supervised parameter-free calibration (SS-PFCE). They proved that by 
intentional updating of samples (e.g., 20% new-domain calibration), SSC prediction errors could be 
minimized to be as close as those of fruit-specific models—thus proving the applicability of cross-
matrix spectral modeling to food quality determination [74]. 

Overall, solving these difficult tasks is at the core of the evolution of spectroscopy-ML–ML 
systems into deployable, generalizable, and strong solutions. Investment in data standardization, 
model interpretability, and hardware-software co- design will be required to optimize technology 
usage for next-generation food safety monitoring. 
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6. Recent Trends and Future Prospects 
 

Along with such technologies that use machine learning (ML) and spectroscopy moving from 
laboratory experiments to practical applications in industry and commerce, the field is going through 
its very core technological change [75]. Although recent emphasis has been on moving away from 
achieving high detection accuracy to making these systems interpretable, scalable, and hardware-
efficient, as well as data privacy law-compliant, academics are answering the growing call for real-
time, embedded applications in food safety by investigating lightweight deployment techniques, such 
as TinyML In-device inference is supported by TinyML through techniques such as model 
quantization, pruning, and architecture optimization [76]. These advances enable the deployment of 
convolutional neural networks and other predictive models on microcontrollers in handheld 
spectroscopic instruments, enabling localized, low- power, and rapid detection of contaminants 
without the use of cloud resources. Likewise, highlighted that the future of embedded intelligence is 
in the balance of energy-efficient hardware and small model architectures, particularly in applications 
such as food quality monitoring, where latency, portability, and cost effectiveness are paramount 
[77]. 

In addition to efficiency, the new trends include multi-institutional collaboration and data privacy. 
Commercial and institutional data silos have hindered the general demand for annotated spectral 
data in diverse food matrices. Federated learning (FL) is a promising substitute by facilitates model 
training in a decentralized manner across multiple sites or devices without the need for centralized 
data pooling. Fendor et al., [78] were highlighted in a systematic review of more than 40 FL 
applications in the food and agriculture industries, showcasing their relevance in pesticide 
monitoring, water safety, and food spoilage forecasting. However, the challenges of heterogeneity 
in sensor platforms, nonuniform data distribution, and issues in synchronization remain paramount. 
The constraints of vertical FL, particularly when consumers inhabit varying feature spaces or sensor 
modalities, present challenges in food spectroscopy when acquisition protocols and hardware are 
diverse. The combination of FL with TinyML and swarm learning platforms for IoT networks, once 
more affirming the suitability of such structures for real- time, privacy-respecting contamination 
tracking in dispersed food networks [78]. 

One of the most important issues of concern is the explainability of machine learning (ML) 
decisions, especially in highly regulated industries like food safety. Although extremely accurate, 
conventional deep learning architectures will continue to be black box systems and are thus not 
generally accepted by industry auditors and government regulators. SHapley Additive exPlanations 
(SHAP) to hyperspectral classifiers and demonstrated how important spectral bands impacting model 
decisions can be visualized and understood [79]. In another work, Zhang and Abdullah introduced an 
XAI-guided wavelength selection approach that can be applied to honey authentication [80]. By 
integrating the SHAP and LIME techniques, they achieved better classification performance while 
significantly lowering the dimensionality of the hyperspectral input data. Such approaches not only 
build trust in AI-based decisions but also improve model performance by eliminating noise or 
redundant information. Arrighi et al., [81] recently systematically reviewed and categorized XAI 
approaches for food datasets and provided a framework for choosing the right interpretability 
methods based on model type, food matrix complexity, and application intent. The use of such 
approaches is likely to become a routine requirement for ML models employed in food quality control 
and contamination risk evaluation. 

At the same time, there is a growing need for reproducible and automated machine learning 
pipelines. Spectral models must be retrained periodically due to changes in food matrices, sensor 
settings, or environmental conditions. Software frameworks like TensorFlow Lite, MLflow, and ONNX 
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Runtime are designed to meet this need by providing model versioning features, performance 
monitoring metrics, and automated retraining cadences. These frameworks also provide continuous 
concept drift detection, which is critical in cases where patterns of contamination are seasonal-based 
or where new supply chains are added to the system. By integrating such deployment frameworks 
into food inspection workflows, models can be updated with minimal user effort or intervention and 
hence attain scalability and long-term sustainability. 

Lastly, the value of open-access spectral archives is increasingly being appreciated. The 
reproducibility of contemporary research is often marred by proprietary data and inconsistent 
acquisition protocols. Initiatives to develop shared spectral repositories with contaminant levels, 
sample data, and sensor data annotations is becoming critical in facilitating benchmarking and 
transfer learning. The datasets can standardize preprocessing for any data across the board and 
enhance model generalization across food groups and geographies. Furthermore, the availability of 
datasets will facilitate the development of machine learning infrastructures that can be tested and 
certified for commercial applications across institutions. 

Briefly, the convergence of machine learning and spectroscopy for food contamination detection 
is moving toward deployable, explainable, and privacy-aware systems. Developments in TinyML, 
federated learning, explainable AI, modular deployment software, and shared data infrastructures 
are not only enhancing technical capability but also overcoming the practical constraints in the 
context of food safety monitoring. Interdisciplinary collaboration will be central to be globally 
scalable and compliant with regulatory standards, hiring food scientists, machine learning engineers, 
software developers, and policymakers on a common mission of secure, transparent, and intelligent 
food quality assurance. 

 
7. Conclusions 
          
       The integration of spectroscopy and machine learning (ML) has provided a new era of non-
destructive, rapid, and intelligent food contamination analysis. This review critically examined the 
spectroscopic method repertoire ranging from traditional NIR, FTIR, and UV-Vis to more advanced 
Raman and hyperspectral imaging and their complementary application with ML algorithms for 
classification, quantitation, and anomaly detection in foods. The experiments on microbial, chemical, 
and physical contaminants have demonstrated that the synergy between spectral resolve and smart 
data analysis has the potential to outperform conventional laboratory-based assays as real-time, 
scalable, and portable diagnostic tools. Despite this progress, several interrelated challenges remain. 
They include spectral variation, small, annotated datasets, model transferability, real-time edge 
deployment challenges, and the absence of standardized acquisition and preprocessing protocols. 
New technologies like TinyML, federated learning, XAI, and open-access collaborative databases hold 
the key to revolutionary solutions for such challenges. Yet, interdisciplinary collaboration would still 
be required to close the gap with deployable and regulation-compliant systems. The strategy for ML-
based food safety spectroscopy requires scalable system design, interpretable modelling pipelines, 
and harmonized evaluation frameworks. Investments in edge cloud hybrid architectures, cross-
domain spectral modelling, and open benchmarking datasets are crucial. The intersection of 
analytical chemistry, computer vision, embedded systems, and food regulatory science will enable 
the future of food safety monitoring to transition from reactive risk management to proactive, global, 
smart surveillance systems with worldwide reach. 
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