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limiting their applicability for real-time monitoring. This review aims to
explore the integration of spectroscopy and machine learning (ML) as a
powerful, non-destructive approach for the rapid detection and
quantification of food contaminants. The paper critically examines recent
advancements in spectroscopic techniques including Near-Infrared (NIR),
Hyperspectral Imaging (HSI), Fourier-Transform Infrared (FTIR), Raman,
and Ultraviolet-Visible (UV-Vis) spectroscopy when combined with both
conventional machine learning algorithms and modern deep learning
models. A comparative analysis of their performance across various food
matrices is presented, highlighting their sensitivity, specificity, and
operational feasibility. The review also identifies key limitations in current
systems, such as data standardization, model interpretability, and
hardware portability. Future research directions are discussed with an
emphasis on explainable Al, the development of portable sensing
Keywords: platforms, and the establishment of open-access spectral databases to

Nir spectroscopy; food safety; machine learning support widespread adoption in food quality monitoring.

1. Introduction

Food safety is a worldwide issue in today's modern society, considering that millions are
foodborne illness victims every year. According to the World Health Organization (WHO), over 600
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million cases of foodborne disease are reported on an annual basis, with an estimated 420,000 deaths
worldwide [1]. Young children, especially under five years of age, are most vulnerable, and therefore
the urgent for an immediate intervention worldwide. Global food chains have raised the issue of
industrial agriculture, global warming, and globalization. All of the above issues bring greater
challenges in tracing and controlling food safety, especially for microbiological, chemical, and physical
food contaminants [2]. In addition to the health effect of food safety, food contamination also raises
economic consequences, such as product recall, disruption of trade, legal liability, and customer loss
of confidence in food systems.

New food safety risks are induced by contaminants like pesticide residues, veterinary drug
residues, heavy metals, and economically motivated adulterants, which continue to be a significant
toxicological challenge [3]. Recent literature has reported the common occurrence of toxic analytes,
like the highly toxic herbicide paraquat, which is still on the market in some regions of the world,
pesticide residues on fruits, and mycotoxins in dried fruits. The label-free electrochemical apt sensor
that was capable of measuring paraquat levels in vegetables with high specificity and on-site
applicability [4]. The hyperspectral imaging and deep machine learning algorithms to detect
pesticide residues in grapes at more than 93% accuracy, enabling risk assessment of contamination
and efficacy of the new detection technology [5]. The pinpointed mycotoxins, ochratoxin OTA and
patulin PAT, as issues impacting fresh and dried fruits in their research on detection technologies
for reducing their transmission. These new findings point to the fact that new detection methods
are not only rapid and inexpensive but are also suitable for centralized laboratories and
decentralized inspection stations in global food chains [6].

Previously, food contamination was identified with the help of analytical methods like high-
performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS),
microbial culture, and enzyme-linked immunosorbent assays (ELISA). Although such procedures are
very sensitive and precise, they are subject to some limitations [7].

These procedures usually require vast amounts of time, which may take hours or even days to
yield results, thus not being suitable for perishables. Such techniques also require large laboratory
space and lengthy sample preparation with advanced laboratory equipment. Additionally, these
methods are largely destructive and not suitable for field-level or real-time analysis. Therefore,
traditional systems based on these techniques have extremely limited applications in fast changing
food safety situations, especially in those places that are decentralized and resource constrained [8].
Although miniaturization and automation have improved, such traditional systems continue to
remain largely unable to meet the increased demand for portable, rapid-response, and efficient
systems indispensable for food safety assurance. Due to the limitations mentioned above,
spectroscopic methods have become more popular for food safety testing. Spectroscopy is a set of
non-invasive, real-time, and chemically inert analytical instruments that allow for instant analysis of
food matrices. Analytical methods like near-infrared (NIR) spectroscopy, Fourier-transform infrared
(FTIR) spectroscopy, Raman spectroscopy, hyperspectral imaging (HSI), and ultraviolet-visible (UV-
Vis) fluorescence spectroscopy have proven useful in providing detailed molecular fingerprints. These
methods are applied in food quality analysis, adulterant detection, and quantification of microbial
contamination by specific spectral fingerprints [9]. These methods are specifically useful in
discrimination of food quality, adulteration detection, and microbial contamination quantification by
individual spectral fingerprints. For instance, NIR and FTIR spectroscopy are best suited for the
analysis of chemical composition and detection of common adulterants. Raman spectroscopy, owing
to its higher sensitivity to dry samples, is best suited for detection of microbial and chemical
contaminants. In addition, hyperspectral imaging can capture spatial and spectral data concurrently,
thus enabling surface inspection of fruits, vegetables, and meat for mold, bruising, or insect
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infestation detection. These characteristics render spectroscopy a promising candidate to be
incorporated in contemporary food monitoring systems [10].

However, the high dimensionality, noise, and complexity of spectral data pose formidable
analytical challenges. The spectral data can exhibit gigantic variability in the environment, water
content, and instrumentation and are therefore time-consuming and error-prone to handle
manually. Machine learning (ML) and, more recently, deep learning (DL) have proven to be very
potent tools for expanding the scope of spectroscopic analysis. ML enables automated decision-
making and pattern recognition processes on high-dimensional big data. Support vector machines
(SVM), random forests (RF), and partial least squares regression (PLSR) are the preferred algorithms
for classifying and regressing. Principal component analysis (PCA) and other dimensionality reduction
methods are useful for preprocessing spectral data and therefore enhance model performance [11].
Concurrently, deep learning models, namely convolutional neural networks (CNN) and their one-
dimensional (1D CNN) counterpart, have also been found to be very efficient in the information
extraction from raw spectral sequences derived from Fourier transform infrared (FTIR) or near-
infrared (NIR) spectrometers. The models bypass the requirement of human-crafted features and
allow end-to-end learning scenarios [12,13].

Recent research has demonstrated the efficacy of hybrid approaches. Fourier-transform infrared
spectroscopy (FTIR) coupled with one-dimensional convolutional neural networks (1D CNN) to
identify melamine and cyanuric acid in pet food, obtaining correlation coefficients greater than 0.99,
which is superior to the results achieved using partial least squares regression (PLSR) and principal
component regression (PCR) techniques [10]. Tang et al., [14] employed surface-enhanced Raman
spectroscopy (SERS) coupled with convolutional neural networks (CNN) and radiofrequency (RF)
models to identify bacterial contamination in meat and dairy products, achieving an accuracy rate
greater than 98% [14].

The hyperspectral imaging coupled with deep learning techniques to identify pesticide residues
in grapes, achieving a performance measure greater than 93% [5]. Collectively, these reports
demonstrate the efficacy of coupling spectroscopy with machine learning for detection as well as
guantitation and classification of complex food contaminants with high sensitivity and specificity.

The union of spectroscopy and ML is a revolution in food safety assessment. Spectroscopy offers
rapid, portable, and scalable data acquisition, while machine learning offers interpretability,
predictive improvement, and the ability to automate [15]. Combined, these technologies offer a
platform to identify contamination in real time and enable proactive and reactive control in food
safety. The platforms are being investigated for a range of applications ranging from automatic
detection of microbial contaminants in raw meat to pesticide residue analysis on fruits and
vegetables, and detection of concealed adulterants in beverages. Edge computing and embedded
machine learning models enable real- time analysis on portable platforms, such as handheld
spectrometers and smart sensors. These technologies can transform field inspections, customs
testing, and even consumer testing.

Despite highly sophisticated work, numerous challenges remain. The generalization of models to
large populations of food types, standardization of preprocessing procedures, instrument-to-
instrument calibration transfer, and need for large, annotated datasets are significant challenges.
Interpretability and transparency of deep learning models, or "black boxes," as regulatory agency
acceptance issues. These will be met through cross-disciplinary effort involving food science,
analytical chemistry, data science, and policy [16,17].

Concurrent with developments in food safety, the intersection of sensor-based and spectroscopy-
based technologies has shown vast transformative capabilities in environmental monitoring. In our
previous contribution, we conducted a comprehensive review of these techniques for real-time
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determination of water quality in freshwater aquaculture systems with an emphasis on their
application in the detection of critical physicochemical parameters such as pH, dissolved oxygen, and
ammonia using traditional sensors as well as spectroscopic techniques [18]. The insight gained here
from that field underscores the versatility of spectroscopy over a wide range of application fields and
presents a conceptual framework for extrapolating similar methodologies to food contamination
analysis. This review thus builds on that established platform to explore the nexus of spectroscopy
and machine learning in food safety monitoring.

This review seeks to provide a thorough overview of the status and future direction concerning
the conjunctive use of spectroscopy and machine learning for food contamination analysis. The basic
principles and operation of the most used spectroscopic methods are described. The machine
learning algorithms used to analyse spectral data and their applications in different types of
contamination, including microbial, chemical, physical, and toxin-based threats, are documented.
This study places specific emphasis on recent post-2020 publications, thereby enumerating recent
developments in this area. In addition, the review accounts for typical challenges and elaborates on
emerging trends, including explainable artificial intelligence, hybrid sensor systems, and open-access
spectral databases [19]. In general, this review seeks to provide researchers, practitioners, and
policymakers with an informed perspective regarding the potential and limitations of applying these
technologies in real food safety environments.

2. Spectroscopy Techniques in Food Contamination Detection

Spectroscopic methods have become leading analytical tools in modern food safety analysis
because they can offer rapid, non-destructive, and chemically non-intrusive analysis. Spectroscopic
methods are based on the investigation of interaction of the food constituents with electromagnetic
radiation and hence offer spectral information defining the molecular structure, chemical bonding,
and structural characteristics. Quality and nature of the spectral information offered are a function
of the applied technique with each offering different advantages based on the matrix, type of
contamination, and sensitivity needed. The following are the major spectroscopic methods used to
analyse food contamination, how they work, the type of spectral information, and food safety
applications [19-21].

Near-infrared (NIR) spectroscopy exploits the absorption of electromagnetic radiation between
780 and 2500 nm by molecular combination bands of vibrations and overtones, for example, O—H,
C-H, and N-H bonds. Its advantages, for example, penetration deep into the material, minimal
sample preparation requirements, and short analysis times, have resulted in increased use of NIR in
the food sector, increasingly used to determine quality parameters like moisture, protein, and fat
content, as well as to detect adulterants and contaminants. The overlapping and broad application
of NIR spectra make manual interpretation time-consuming. To circumvent this, preprocessing
operations such as multiplicative scatter correction (MSC), standard normal variate (SNV), and
derivative transformation are used to eliminate noise and baseline drift. Coupling with Machine
Learning (ML) models improves the discriminability of the NIR so that subtle chemical differences in
multispectral food matrices can be detected. NIR coupled with support vector machine (SVM) and
artificial neural network (ANN) for aflatoxin and antibiotic residues analysis in milk and cereal
commodities and recorded high classification performance [22].

Fourier transform infrared (FTIR) spectroscopy utilizes mid-infrared radiation (4000-400 cm™) to
measure the fundamental vibrational transitions of the molecular bonds, resulting in sharp and
characteristic spectral peaks. This molecular fingerprinting capability allows FTIR to provide in-depth
information on the presence of target chemical compounds and thus is very valuable for the



International Journal of Advanced Research in Food Science and Agriculture Technology
Volume 6, Issue 1 (2025) 1-23

identification of food adulterants and chemical residues. FTIR spectra are more chemically resolved
and selective than NIR spectra but water sensitive. Baseline correction, smoothing (e.g., Savitzky—
Golay), and normalization preprocessing steps are required for reproducibility [23]. Recent
application included the integration of FTIR and deep learning for end-to-end predictive models. Joshi
et al., [10] used FTIR and 1D convolutional neural network (1D-CNN) for the identification of
melamine and cyanuric acid in pet food with R? values greater than 0.99 [10,14]. RF to identify
bacterial contamination in meat and dairy products and attained classification accuracies of >98%
[6]. These examples illustrate the capability of FTIR to conduct high resolution contaminant detection
with the application of advanced ML approaches

Raman spectroscopy detects the inelastic scattering of monochromatic light upon collision with
molecular vibration. In contrast to IR absorption methods, Raman spectroscopy detects information
relevant to molecular polarizability and is optimally used for the analysis of low-moisture food and
aqueous systems. The method yields well-defined and narrow peaks that enable highly specific
detection of compounds, e.g., microbial and chemical contaminants. Surface enhanced Raman
spectroscopy (SERS) amplifies the weak Raman signal so that trace levels become detectable even in
complicated matrices [24] . Deep convolutional neural network models to raw Raman spectra to
identify bacterial contamination with a detection rate of about 100% [25]. Raman's high specificity
and ML ability to identify patterns make it beneficial for on-site and laboratory-based food safety
analysis.

Hyperspectral imaging (HSI) is a fusion of traditional spectroscopy with digital imaging, which
generates a three-dimensional data cube of spatial and spectral information. Each pixel contains a
full spectrum, enabling chemical identification and contaminant localization on food surfaces. HSI is
very well suited for surface-level defect inspection, mold, bruising, and contamination of fruits,
vegetables, and meat. It generates humongous high-dimensional datasets that require
dimensionality reduction methods, e.g., PCA, t-SNE, or CARS, prior to ML model classification. HSI
and convolutional neural networks (CNNs) to identify pesticide residues in grapes with a classification
accuracy of over 93% [5]. Likewise, Ekramirad et al., [26] employed HSI and gradient tree boosting to
classify insect infestation in apples with 97.4% accuracy. How HSI, in combination with ML, enables
efficient detection of microbial and chemical contamination of foods [27].

Ultraviolet-visible spectroscopy operates within 200 to 800 nm light wavelengths. Ultraviolet-
visible spectroscopy is since ultraviolet and visible radiation is absorbed by colored compounds in
foods. Ultraviolet-visible spectroscopy is primarily applied to investigate electronic transitions and is
more efficient in the detection of coloured compounds such as pigments and polyphenols with
distinctive absorption profiles in the UV-Vis. UV-Vis spectroscopy is typically applied to identify
adulterants as well as to verify color alteration due to oxidation or spoilage. The analysis is also
applied to verify if food products such as juices, oils, wine, and spices are authentic. Vibrational
spectroscopy methods, such as UV-Vis, for detecting milk product adulteration. The authors pointed
out the effectiveness of UV-VIS spectroscopy in the detection of changes in composition and quality
differences by examining spectral patterns in the visible and ultraviolet region [28]. Although less
molecular-specific than FTIR or Raman spectroscopic techniques, UV-VIS spectroscopy is still a
potential candidate due to the ease of use, the rate of data acquisition, and field-portable instrument
compatibility.

Fluorescence spectroscopy is based on the phenomenon of luminescence of a compound on the
absorption of visible or ultraviolet light. The analytical method is highly sensitive and is able to
quantify naturally fluorescent and labelled analytes in very trace amounts. Nan et al., [6] discussed
the use of fluorescence-based methods for determining ochratoxin A and patulin mycotoxins in fruit
samples. A label-free, fluorescence amplified electrochemical apt sensor for the determination of
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paraquat residues in vegetable samples, thus developing an ultra-sensitive and selective detection
system most suitable for field testing [4]. These studies collectively illustrate the growing relevance
of fluorescence and UV-Vis spectroscopy in food contaminant tracking, particularly when coupled
with machine learning methods for quantitative determination and classification.

These spectroscopic methods provide an array of equipment for detecting contaminants in
different food categories. For example, HSI allows for non-destructive screening of fruits, whereas
FTIR and Raman spectrometry analyse adulterants at the molecular level. Their use depends on food
matrix complexity, nature of the contaminant, requirement of sensitivity, and working range. If used
along with sophisticated machine learning algorithms, their analytical capability is further increased
to screen out the contaminants in real-time, high-throughput, and high accuracy throughout the
entire food supply chain.
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Fig. 1. Schematic representation of major spectroscopic techniques used in food contamination detection
3. Machine learning

The union between spectroscopy and machine learning (ML) has revolutionised food safety
analysis, allowing sensitive, fast, and non-destructive identification of contaminants at near real-
time. Although several spectroscopic methods near-infrared (NIR), Fourier-transform infrared (FTIR),
Raman, ultraviolet-visible (UV-Vis), and hyperspectral imaging (HSI) can provide chemical and
physical information from food matrices, the application of powerful computing capacity is needed
to realize the maximum benefits of these methods [34]. Raw spectral data provided by these
methods are by nature high-dimensional consisting of thousands of variables that are highly
correlated to describe reflectance or absorbance at many wavelengths. In addition to this, data are
influenced by noise, baseline drift, light scattering, environmental variability, and instrument
variability and therefore are hard to interpret.



International Journal of Advanced Research in Food Science and Agriculture Technology
Volume 6, Issue 1 (2025) 1-23

To solve such problems, linear chemometric methods, including principal component analysis
(PCA) and partial least squares regression (PLS-R), have been conventionally employed [29]. These
are nonetheless linear assumption-based methods and might fail to capture the nonlinear, complex
dynamics of real spectroscopic data. With increasingly complex food matrices and increasingly
complex contaminants from microbial, chemical, and physical adulterants, there is equally an urgent
demand for equally accurate but also flexible, scalable, and capable of learning hierarchical
representations directly from raw inputs. Machine learning has proven to be a suitable framework
for the above demands, facilitating automated pattern recognition, anomaly detection, and
measurement with minimal or no human intervention [30]. Developments in the last decade in deep
learning (DL), including convolutional neural networks (CNNs), support vector machines (SVMs),
random forests (RF), and ensemble methods, have proven to provide better performance in
spectroscopic applications compared to traditional methods. The models particularly excel in
recovering information from large, complex data, detecting weak spectral signatures of
contamination that would be undetectable to human experts, as well as traditional algorithms [31]
[32].

Applications of ML to food spectroscopy span the entire data pipeline, from signal preprocessing
and feature selection to model training and performance estimation. Preprocessing operations
attempt to denoise and normalize the spectral input to minimize the impact of external and
instrumental variability. Feature selection techniques specify the most discriminatory wavelengths
or bands of spectral data that are useful for discrimination or prediction. Classification models are
trained to separate contaminated and clean samples, and regression models are employed to predict
contaminant levels or degradation levels. Finally, rigorous model validation ensures robustness,
generalizability, and acceptability for regulatory use in food inspection pipelines [33].

This section provides each part of the ML pipeline within the context of spectroscopic data for
food contamination detection. Particular focus is on recent developments, best practice in
methodology, and application-specific challenges, following recent empirical studies and overall
reviews post-2021. By the overview of each step in the ML pipeline, this review aims to provide
researchers and practitioners with a clearer idea of how such methods facilitate the development
of next-generation food safety diagnostics that are not only accurate and trustworthy but also field-
deployable, scalable, and interpretable.

3.1 Preprocessing

Preprocessing is a critical step in the application of machine learning (ML) algorithms to
spectroscopic data analysis in food safety, for example. Food sample spectra obtained through
methods like near-infrared (NIR), Fourier-transform infrared (FTIR), Raman, or hyperspectral imaging
(HSI) will typically contain redundant variability in the form of distortions. This variability will
commonly take the form of random noise, baseline drifts, effects of light scattering, and inter-sample
variability as a function of parameters like moisture content, surface roughness, or compositional
heterogeneity. Without preprocessing, such differences will dampen weak but meaningful chemical
signatures, thus undermining the effectiveness and integrity of ML models [34].

To have coherence and to increase detection of informative signal, researchers apply
preprocessing techniques like Standard Normal Variance (SNV) and Multiplicative Scatter Correction
(MSC) to eliminate the influence of path length and scatter, particularly with powdered or irregular
samples. Savitzky Golay filtering is also commonly applied to enhance spectral information by
reducing high-frequency noise without diminishing peak shape integrity. First- and second-order
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derivatives are utilized for improving peak features, facilitating deconvolution of overlapped spectral
bands, and eliminating baseline drift [35].

One such recent systematic study highlighted the importance of preprocessing in the majority of
machine learning efforts in the identification of mycotoxins and other food adulterants. The review
showed that more than 85% of published research employed preprocessing methods, and models
trained on raw spectra were always inferior to those trained on pre-processed data [36]. Specifically,
the use of SNV, derivatives, and PCA dependent dimensionality reduction was linked to the optimal
classification accuracy in studies conducted with FTIR and NIR spectra In in-line or handheld food
analysis applications, where operator-dependent sensor calibration variation, illumination, and
control are larger, standardized preprocessing is mandatory. As ML-based spectroscopic technology
is more widely applied in non- laboratory settings, high-quality preprocessing pipelines will be
necessary to ensure model accuracy, interpretability, and acceptability to regulators. Some newer
architectures have also built in automated preprocessing algorithms, where optimal transform
selection is dynamically determined based on the properties of the dataset a fast-growing area of
interest for making ML workflows more scalable and less human-optimization dependent [37].

3.2 Feature Selection

The most critical steps in the analysis of spectral data are feature extraction and selection
followed by preprocessing. Because spectroscopic data typically contain hundreds or thousands of
variables, each a unique wavelength or frequency, the most critical feature is dimensionality
reduction without information loss related to food contamination. Not only does this enable
computationally efficient and better-performing models, but also generalizability and minimization
of overfitting. Of the older techniques, PCA is mostly used to project data into a lower-dimensional
space without losing most of its variance. PCA is useful for exploratory data analysis and visualization
but is an unsupervised method and will not necessarily select the best features for a specific
classification or regression problem. More advanced techniques, such as competitive adaptive
reweighted sampling (CARS), successive projections algorithm (SPA), and recursive feature
elimination, have been proposed to address this by picking variables on the basis of correlation with
class labels or response variables. These are especially useful when diagnostic information is carried
only by thin wavelength bands, an issue commonly faced in adulterant detection or microbial
contamination research [38]. A case in point is within their evaluation of hyperspectral imaging in
food microbiology, where the necessity of dimensionality reduction to prevent the curse of
dimensionality inherent in spectral imaging systems. From their findings, feature selection methods
not only reduce the computational burden but also lead to more robust model performance when
coupled with machine learning classifiers such as SVMs or random forests (RFs). The past decade has
seen improvements in the deep learning framework give rise to end-to-end architectures such as
convolutional neural networks (CNNs), which learn hierarchical spectral representations from lightly
processed data. This is revolutionary since it eliminates hand-engineered feature selection and can
lead to better accuracy with big data. In food safety applications that still remain dominated by small
data, traditional feature selection routines remain the dominant choice since they are interpretable
and can result in identification of specific chemical markers. The selection of using traditional vs. deep
learning-based feature extraction is thus a function of the specific analytical setup, data availability,
and interpretability vs. the performance trade-off [39,40].
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3.3 Classification Algorithms

Following feature extraction, classification models are the core component of the majority of
machine learning (ML) applications to spectroscopic food contaminant analysis. The models are
trained to distinguish between classes such as "contaminated" vs. "noncontaminated" samples or
between specific microbial strains or adulterants. Of the classical models, support vector machines
(SVMs) are especially popular as they are capable of handling high-dimensional and nonlinear data
with the aid of kernel functions. They are also resilient, even with relatively small datasets, and are
less prone to overfitting [41]. Likewise, k-nearest neighbors (k-NN) offer an easy-to-implement
solution for local proximity-based classification in feature space but are not robust and prone to noise
and irrelevant features [42]. Ensemble models such as decision trees and random forests (RFs) are
widely employed for their robustness and interpretability; RFs, in turn, calculate the mean of the
output of numerous trees to reduce variance and enhance generalization. More advanced models
such as artificial neural networks (ANNs) and convolutional neural networks (CNNs), are capable of
extracting the nonlinear relationships regardless of manual feature selection. CNNs, especially in
their 1D and 2D implementations, have been effectively employed to directly process spectral and
hyperspectral data. For instance, in a recent study, Liu et al., [39] employed CNNs for tea quality
classification via near-infrared spectra, with enhanced performance compared to conventional
classifiers, demonstrating the growing applicability of deep learning models to food analysis [43].

3.4 Regression Algorithms

Apart from classification, most spectroscopic machine learning applications in food safety are
quantitative prediction, such as quantitation of contaminant concentration or extent of spoilage.
Regression models are the target for these. Partial least squares regression (PLSR) has been the most
prevalent chemometric tool employed for spectroscopic quantitation for the last two decades. PLSR
is ideally suited to linear modeling of target output against spectral input even when there is
multicollinearity [44,45]. For handling nonlinearity and higher-order interactions, however, more
sophisticated regression techniques have come to the fore. Support vector regression (SVR), a direct
extension of support vector machines to continuous output variables, has also gained popularity
considering robustness and insensitivity to outliers. Neural network-based regression is also highly
promising, especially in deep learning models. For example, a recent review of infrared spectroscopy
in food safety applications highlighted the following case studies: one used second derivative
preprocessing of near-infrared spectra for pesticide residue quantitation in strawberries and cabbage
using PLSR and LS SVM. Predicted prediction correlation coefficients (RP) were above 0.93 with a root
mean square error of prediction (RMSEP) below 3.22 mg kg™, while LS SVM was superior to PLSR,
highlighting the advantages of nonlinear regression in complex matrices. These studies indicate that
while PLSR remains of interest, the application of nonlinear regression techniques can deliver high
accuracy, especially in applications involving chemically heterogeneous composition or trace-level
analytes [22]. With more stringent food safety laws and sample heterogeneity, the application of
strong regression models based on high-quality spectral data has become an imperative for
guantitative, accurate food contaminant analysis.

3.5 Model Evaluation Metrics

To ascertain the performance and reliability of such models, strict performance metrics have to
be employed. For classification, some of the most widely employed metrics include accuracy,
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sensitivity (true positive rate), specificity (true negative rate), and precision, and F1 score. Accuracy
provides an overall success rate, while sensitivity and specificity provide specific interest in food
safety contexts where false negatives (i.e., failure to identify a contaminant) are of particular concern.
For regression models, evaluation can include the root mean square error (RMSE), mean absolute
error (MAE), and coefficient of determination (R?). These assess the quality of the predicted values
against true measurements [46]. NIR spectroscopy coupled with random forest classification, which
was 97.7% accurate on the test set. They also employed Support Vector Regression (SVR) for the
prediction of adulterant content, R? > 0.98, RMSE < 1.7%, which showed the model's accuracy for
both classification and quantitative uses. Their study is an outstanding example of good practice in
model validation, e.g., the application of k-fold cross-validation and the application of more than one
metric of performance to render models robust and deployable in food safety contexts [18]. The
figure 2 below shows the key steps in the process of applying machine learning methods in
spectroscopic food analysis.
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Fig. 2. Machine learning pipeline for spectroscopic food contamination analysis
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4. Integration of Spectroscopy and Machine Learning: Applications In Food Contamination
Detection

Spectroscopy combined with machine learning has transformed food contaminant analysis to
produce fast, non-destructive, and scalable methods that supplant the traditional assays. The
analytical power of spectroscopic platforms typically limited by noise, high dimensionality, and non-
linearity is significantly improved when coupled with ML methods capable of extracting latent
features and recognizing discriminative patterns. In our earlier work, we explained how Wireless
Sensor Networks (WSNs) and Internet of Things (loT)-based systems can facilitate smart, real-time
monitoring of the environment in agriculture, aquaculture, and smart cities. The results on energy-
efficient data acquisition, wireless communication, and sensor deployment strategies provide a
relevant background for the implementation of similar smart monitoring systems in the application
of food safety applications, particularly in the integration of spectroscopy and machine learning
models. This section offers a critical overview of the use of such hybrid platforms in solving microbial,
chemical, and physical contamination problems in a broad range of food matrices. Recent studies
between 2023 and 2025 have demonstrated advancements in model structure, spectral
preprocessing, and data fusion techniques. A concise table is presented at the end of this section.

4.1 Microbial Contamination

Food contamination by microbes is the biggest food safety issue in the world. The most prevalent
foodborne illness causing microbes are Escherichia coli, Salmonella, and Listeria monocytogenes.
Culture- or quantitative polymerase chain reaction-based detection platforms are now being
drastically expedited and field-deployed through the help of spectroscopic sensors and ML pipelines
[8].

In 2024, Wisuthiphaet et al., [47] used a bacteriophage-induced excitation—emission matrix
(EEM) fluorescence spectroscopy method to find E. coli in spinach homogenate. Their work
demonstrated that phage-induced spectral changes—indirect indicators of bacterial presence—were
accurately described by a Gaussian Process classifier with more than 92% classification accuracy at
bacterial concentrations as low as 102 CFU/mL [47]. This was achieved with only six important
wavelengths, selected based on feature importance ranking, and thus eliminating spectral
redundancy and allowing for deployment on low-resolution, miniaturized optical devices. These
advancements demonstrate that the incorporation of spectral fingerprinting into traditional machine
learning models enhances the sensitivity of real-time food safety measurements.

In deep learning, a multi-scale convolutional neural network (CNN) for Salmonella serovar
classification from Raman spectral data. Preprocessed spectra through Savitzky—Golay smoothing
and normalized using standard normal variate (SNV) were employed as input to the CNN, which
consisted of hierarchical convolutional layers optimized for the extraction of local vibrational peaks
as well as more general spectral pattern. The model was confirmed to be approximately 98.4%
accurate and was also significantly robust against baseline drift, demonstrating the application of
deep spectral structures to classification problems of high complexity [48].confocal micro-Raman
spectroscopy to perform one of the largest pathogen identification trials. The research enhanced
computational efficiency by integrating classic classifiers such as support vector machines (SVM) and
random forests (RF) with that of CARS-SPA feature selection, optimally thus enhancing the input
feature space. Importantly, it employed Shapley Additive Explanations (SHAP) to determine which
Raman shifts had the greatest impact in classification, thus evading the long-standing issue of
machine learning "black box" behavior in regulatory contexts. This degree of transparency is an
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important step towards the application of ML-spectroscopy tools towards developing actionable and
auditable diagnostic protocols [49].

Collectively, these studies recognize both the utility and growing maturity of machine learning-
based spectroscopic methods in microbial contamination analysis. In addition, they demonstrate a
clear evolution from simple SVM models to increasingly complex explainable and deep learning
models capable of distinguishing different pathogens with little preprocessing necessary.

4.2 Chemical Contamination

Trace amounts of chemical food pollutants such as pesticide residues, veterinary medications,
and heavy metals are of significant toxicological interest even at trace concentrations. Food
chemometrics' use of non-destructive identification of these contaminants has been a long-standing
dream, and the developments in spectroscopic instrumentation complemented by its ML models
have well advanced the limits of what is possible [50].

The short-wave infrared hyperspectral imaging (SWIR-HSI) for the detection of pesticide residues
on the surface of Hami melon. The model used a 1D convolutional neural network (1D-CNN) that
used spatial and spectral information, hence capable of sensing chemical absorption and
microstructural parameters that signified contamination. Background correction, median filtering,
and normalization were the preprocessing methods adopted that rendered the performance of the
model to be insensitive to changes in ambient light. The resulting model achieved classification
accuracies of approximately 94%, which is comparable to traditional chromatography techniques,
but  without the need for any reagents or sample  destruction [51].

Though classification might be necessary, chemical analysis will usually demand quantitation,
determining the levels of concentration of the impurities. These models, including partial least
squares regression (PLSR), Support Vector Regression (SVR), and Multilayer Perceptrons (MLPs), have
functioned according to this trend [52]. For instance, Ye et al.,, [5] showed the application of
hyperspectral imaging (HSI) for pesticide grape residues discrimination using support vector
machines (SVM) and convolutional neural networks (CNN). Their models' accuracy range was 93.3%
to 97.2% depending on the fruit variety type and the spectral preprocessing methods applied. While
regression analysis as such was not employed in their article, most recent papers on pesticide
quantitation by near-infrared (NIR) and Raman spectroscopy typically report R? values > 0.90 with
root mean square error of prediction (RMSEP) values < 2 mg/kg when feature selection methods like
variable importance in projection (VIP) and genetic algorithms (GA) are applied. Whether the models
can be transferred across fruit types is being investigated. Some authors have begun to tinker with
transfer learning—train on one fruit, test on another with some success, progressing to more general
contamination sensors [53].

In conclusion, chemical contamination analysis has come a long way from the conventional static
lab testing to more dynamic, mobile, and intelligent systems that can make binary classification as
well as quantitative prediction. Hybrid deep learning algorithms, particularly with spatial contexts.

4.3 Physical Contamination and Adulteration

Identification of these physical impurities, such as plastics, bone, stones, and insect material, by
conventional optical inspection systems is challenging owing to their varied morphology and close
spectral resemblance to the food matrix [54].

The integration of spectroscopy with object-detection-based machine learning algorithms has
enabled novel means of real-time and non-destructive physical contamination screening.
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A 2023 paper on chili peppers employed Vis-NIR imaging with pixel-wise classification (with SVM and
RF) and subsequent object-level detection with YOLOV5. The proposed system achieved 86%-pixel
classification accuracy and 96% object detection accuracy, which are appropriate for conveyor belt
automation in factory sorting lines. Of particular interest, the paper emphasizes the importance of
hybrid pipelines where spectral segmentation comes before object recognition, enhancing
interpretability and minimizing false positives [55].

The challenge of detecting small, heterogeneous foreign contaminants in chicken meat using a
semi-supervised Generative Adversarial Network (GAN) model trained with a 1D U-Net from near-
infrared (NIR) spectral information. In contrast to supervised methods that need large, annotated
datasets, their approach allowed the model to learn spectral representations from pure data directly
while identifying labelled anomalies as potential contaminants. The model achieved a high F1-score
of 96.8% and demonstrated good generalization capability for new object types. This new method
reduces the annotation cost and is particularly well-suited to scenarios with high contamination
uncertainty [56].

These principles in rice food processing operations. They proposed a new YOLOv-MA (multi-scale
dilated attention) framework, which resulted in a 5%—11% mAP increase over the traditional YOLOvV5
in the detection of contaminants such as husk fragments and soil dust. Their research underscores
the imperative to develop adaptive architectures that are capable of learning across multiple spatial
resolutions a concern of growing significance to many food matrices [57].

Vis-NIR HSI to detect minced meat adulteration, or beef-chicken mixing. Spectral-spatial
transformation and SVM classification resulted in 94.9% accuracy. The application of this technique
highlights the increasing feasibility of spectral fingerprinting in combating economically motivated
adulterationa large compliance issue in developed and emerging economies [58].

4.4 Application across Food Matrices

Apart from the type of contamination, spectroscopy—ML integration performance also greatly
depends on physical and chemical properties of the target food matrix. Water content, for instance,
surface roughness, biochemical composition, influences the quality of the spectrum and model
performance [59].

In highly aqueous foods such as meat and milk, overlapping bands of water absorption and
scattering effects make analysis challenging. however, demonstrated the effectiveness of short-wave
infrared hyperspectral imaging (SWIR-HSI) with a 1D convolutional neural network (CNN) in the
identification of Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus on mutton
surfaces. Its success was thanks to sophisticated spectral preprocessing, i.e., the use of first-
derivative transformations and continuum removaland the capacity of the CNN model to learn
features irrespective of changing moisture conditions. The system was capable of generating a
classification accuracy of approximately 98.6%, vouching for its credibility and its potential in meat-
processing facilities [60].

Fermentation products are challenging since their composition varies with time. Inception-based
2D-CNN model with NIR spectra of bacterial broth as the training dataset. Their model yielded R? =
0.90 and RMSE = 0.52 in the estimation of the total viable counts (TVC). The utilization of inception
modules, which have the capability to process multiple receptive fields in parallel, allowed the model
to learn across batch conditions and thus be usable for in-line quality control [61].

Together, these pieces of work demonstrate that model building and preprocessing will need to
be modified not only to the type of contamination but also to the matrix-dependent optical response.
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Next-generation systems will probably incorporate adaptive algorithms that are capable of self-

calibrating to changing food environments.

Recent uses of spectroscopy and machine learning for food contamination detection are outlined in

Table 1.
Table 1
Summary of recent studies integrating spectroscopy and machine learning in food contamination detection
Contamination Food Matrix Spectroscopy ML Model Performance Reference
Type Technique (Year)
. . SVC, RF,
/\/I/crob/gl Spinach EEM fluorescence Gaussian Accuracy>92 % [62,63]
(E. coli) homogenate
Process
Salmonella !Sacterlal Raman Multi-scale CNN Accuracy 64,65]
serovars isolates spectroscopy ~98.4%
Mixed pathogens Bacterial Confocal SVM, RF + Accuracy
. : CARS-SPA+ [19]
(9 types) isolates microRaman ~98.9%
SHAP
Chemical Hamimelon  SWIRHSI 1D-CNN+ Accuracy=94%  [20]
(pesticides) fusion
Physical (foreign . Vis-NIRHSI + RF, SVM, Pixel 86 %,
Chil 21
objects) i peppers YOLOVS YOLOVS Detection 96% 2%
NIR-HSI +
. . ) o
Physical (foreign Poultry breast Semi-supervised 1D U-Net + GAN F1-score 96.8 %, [22]
matter) GAN Accuracy 96.5 %
Physical (foreign Rice Vis-NIRimaging + +5-11% mAP
YOLOv-MA 23
objects) production YOLOv-MA v gain (23]
SVM +
Adulteration Beef mince Vis-NIR HSI spectral Accuracy 949%  [24]
(meat) transformati
on
Microbial PLS-DA, SVM
| 4 7 0,
(pathogens) Mutton SWIR-HSI RE Accuracy 94.3 % [25]
Quantitative Fermentation NIR spectrosco Inception 2D- R2=0.90; RMSE 26]
microbial load broth P Py CNN =0.52

Despite significant progress in the integration of spectroscopy and machine learning (ML) for
food contamination detection, a number of sophisticated and interrelated challenges remain to
stand in the way of their advancement from laboratory research to practical and scalable
deployment [62]. These challenges are not merely technical hurdles—such as equipment
variability, data dimensionality, and algorithmic computational expense—but also more general
infrastructural and regulatory hurdles. The integration of spectroscopy with ML often entails the
analysis of high dimensional noisy data from various food matrices, each having unique chemical
and physical characteristics dictating spectral behaviour. Additionally, the sensitivity of
spectrometric response to the environment, operator handling, and equipment configuration
presents a further layer of complexity that must be successfully navigated by ML models. This
challenge is extremely problematic when models are deployed over many instruments or
geographic locations, where no standardization is the norm. Additionally, the dependence of
machine learning models on the quantity and quality of annotated training data is extremely
high. For food, the collection of large and diverse annotated datasets is not only time consuming
but is also constrained by the food samples’ perishable nature and diversity. Algorithms that
show robust performance under laboratory-controlled conditions fail to generalize in industrial
or field settings. Additionally, the lack of standard acquisition protocols, the computational
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expense of real-time execution on edge hardware, model interpretability, and regulatory
clearance are all present formidable challenges [63]. Addressing these multifaceted challenges is
necessary to fully realize the potential of spectroscopy-ML systems in facilitating scalable,
accurate, and non-invasive solutions for the next generation of food safety monitoring.

5. Challenges in Integration

One of the primary and most common problems in the machine learning-spectroscopy
integration for the detection of food contamination is high spectral variability due to intrinsic and
extrinsic variables. Food matrix spectra are parameters that depend on moisture content, texture,
color, and particle size distribution. e.g., in NIR and MIR spectroscopy, samples with high water
content (e.g., fresh meat, vegetables, or fruit) yield strong water absorption bands, which mask
underlying detail about contaminants. Surface roughness heterogeneity of contaminant scattering
and distribution artifacts, especially with diffuse reflectance methods, also cause baseline shifts.
Extrinsic sources like instrument calibration, non- uniform illumination source, and non-uniform
ambient experimental environmental conditions (e.g., temperature or humidity) also add to the
problem. Minor variations in the incidence angle, path length, or sample position can add to
nonreproducible spectral profiles. These changes significantly reduce the robustness and
reproducibility of the machine learning models trained on such spectra, especially when such models
are implemented using different instruments or sample acquisition geometries [64]. When the same
preprocessing protocols, e.g., standard normal variate (SNV) and multiplicative scatter correction
(MSC), were employed, model transfer of NIR models from one miniaturized device to another
resulted in a catastrophic loss of classification accuracy. The observation underscores the critical
importance of advanced calibration transfer methods, spectral standardization protocols, and
standardized acquisition protocols to guarantee device-agnostic MLspectroscopy pipeline
performance under a wide range of operating conditions [65].

Another persistent issue is the high dimensionality of spectral data and the consequent risk of
overfitting, especially when working with small or sparsely distributed datasets. Hyperspectral
imagery and spectral data are normally liable to contain hundreds or thousands of bands, most of
which are redundant or collinear. Redundancy is computationally costly and increases the risk of
fitting noise instead of an informative signal. Dimension reduction techniques such as PCA, variable
selection techniques such as competitive adaptive reweighted sampling (CARS) and genetic
algorithms (GA- SPA) are commonly employed, but their performance is normally outshone by
natural variability and noise in the data. This issue is much more pronounced in deep learning models
such as CNNs, where they need vast amounts of training data to prevent memorization of patterns
corresponding to individual batches or environments [66,67].In their work on monitoring
fermentation operations, The robust initial performances (R? = 0.90, RMSE = 0.52) with NIR spectra-
trained CNN models. The models, however, had a sharp decline in performance about 10% when
they were tested on unseen batches, even after the use of the same instrumentation and
preprocessing protocols. This situation indicates the burning need for mechanisms such as cross-
batch normalization, data augmentation, dropout regularization, and domain-invariant learning to
provide the robustness and reproducibility of models in different conditions [61].

Overfitting is also directly related to the lack of well-defined standard operating procedures for
data collection, preprocessing, and metadata documentation, which severely hinders reproducibility
across different laboratories and institutions. Additionally, spectroscopic workflows also have
inconsistencies in details that might appear minor; however, these parameters are more important—
such as the choice of spectral range, resolution parameters, illumination geometry, sample thickness,
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and background correction techniques—each introducing variability that influences model
transferability. Additionally, preprocessing methods used on raw spectral data differ in studies
seldom [68]. The variations in ambient light and sample handling could alter classification accuracy
in portable FTIR instruments regardless of concealed sample types. In most instances, critical
metadata concerning acquisition conditions, instrument calibration, and preprocessing protocols are
not recorded and render replication of published results impossible. Such a condition calls for
universally accepted spectral data standards and reporting protocols, including the FAIR principles
(Findability, Accessibility, Interoperability, and Reusability), to enhance collaborative spectral data
sharing and cross-validation among various laboratories [69].

The use of spectroscopy—machine learning systems in field-portable or edge devices presents
new challenges of sensor performance, algorithmic speed, and real-time responsiveness [70]. In
contrast to high-spectral resolution laboratory-based spectroscopic instruments with abundant
computational resources operating in controlled environments, field-portable instruments need to
cope with severe compromises. Miniature spectrometers are beset by low dynamic range, low
signalto-noise ratios, and limited spectral bands, which compromise their sensitivity to trace-
abundance analytes. As an additional challenge, the use of machine learning models in these devices
necessitates extensive algorithmic fine-tuning since onboard processors are incapable of executing
standard convolutional neural network (CNN) models or ensemble methods without suffering the
penalty of compromised latency or overheating. In a recent article, A portable spectroscopic platform
with on-device convolutional neural networks (CNNs) for real-time prediction of moisture and
protein content in raw cereals [71]. The method showed the applicability of TinyML models for fast
guality inspection in field settings; however, the system also showed subtle decreases in predictive
accuracy compared to benchscale analysis, especially in variable optical density samples. The results
illustrate the unavoidable performance— portability tradeoff, where mobility and real-time access
optimizations come at the price of compromised analytical accuracy. To limit this gap, future research
should explore hybrid architectures that bridge local feature extraction on edge devices with secure,
low-latency cloud-based inference without sacrificing speed while preserving spectral fidelity.

The greatest and perhaps most challenging task is the machine learning model generalizability to
generalize across diverse food matrices, contaminant types, and operating conditions. Models are
good when trained and tested on one matrix (e.g., apples or grapes); however, accuracy is noted to
be decreased upon expansion to other food materials due to variations in spectral characteristics.
The variations occur as a result of variations in texture, water content, pigment, or chemical
characteristics. Calibration transfer and domain adaptation techniques seek to close this gap by
transferring models from small new-domain sets [72,73]. The investigated transferability of NIR-
based SSC models among strawberries, grapes, and apples using calibration transfer techniques such
as PLS correction and semi-supervised parameter-free calibration (SS-PFCE). They proved that by
intentional updating of samples (e.g., 20% new-domain calibration), SSC prediction errors could be
minimized to be as close as those of fruit-specific models—thus proving the applicability of cross-
matrix spectral modeling to food quality determination [74].

Overall, solving these difficult tasks is at the core of the evolution of spectroscopy-ML-ML
systems into deployable, generalizable, and strong solutions. Investment in data standardization,
model interpretability, and hardware-software co- design will be required to optimize technology
usage for next-generation food safety monitoring.
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6. Recent Trends and Future Prospects

Along with such technologies that use machine learning (ML) and spectroscopy moving from
laboratory experiments to practical applications in industry and commerce, the field is going through
its very core technological change [75]. Although recent emphasis has been on moving away from
achieving high detection accuracy to making these systems interpretable, scalable, and hardware-
efficient, as well as data privacy law-compliant, academics are answering the growing call for real-
time, embedded applications in food safety by investigating lightweight deployment techniques, such
as TinyML In-device inference is supported by TinyML through techniques such as model
guantization, pruning, and architecture optimization [76]. These advances enable the deployment of
convolutional neural networks and other predictive models on microcontrollers in handheld
spectroscopic instruments, enabling localized, low- power, and rapid detection of contaminants
without the use of cloud resources. Likewise, highlighted that the future of embedded intelligence is
in the balance of energy-efficient hardware and small model architectures, particularly in applications
such as food quality monitoring, where latency, portability, and cost effectiveness are paramount
[77].

In addition to efficiency, the new trends include multi-institutional collaboration and data privacy.
Commercial and institutional data silos have hindered the general demand for annotated spectral
data in diverse food matrices. Federated learning (FL) is a promising substitute by facilitates model
training in a decentralized manner across multiple sites or devices without the need for centralized
data pooling. Fendor et al., [78] were highlighted in a systematic review of more than 40 FL
applications in the food and agriculture industries, showcasing their relevance in pesticide
monitoring, water safety, and food spoilage forecasting. However, the challenges of heterogeneity
in sensor platforms, nonuniform data distribution, and issues in synchronization remain paramount.
The constraints of vertical FL, particularly when consumers inhabit varying feature spaces or sensor
modalities, present challenges in food spectroscopy when acquisition protocols and hardware are
diverse. The combination of FL with TinyML and swarm learning platforms for loT networks, once
more affirming the suitability of such structures for real- time, privacy-respecting contamination
tracking in dispersed food networks [78].

One of the most important issues of concern is the explainability of machine learning (ML)
decisions, especially in highly regulated industries like food safety. Although extremely accurate,
conventional deep learning architectures will continue to be black box systems and are thus not
generally accepted by industry auditors and government regulators. SHapley Additive exPlanations
(SHAP) to hyperspectral classifiers and demonstrated how important spectral bands impacting model
decisions can be visualized and understood [79]. In another work, Zhang and Abdullah introduced an
XAl-guided wavelength selection approach that can be applied to honey authentication [80]. By
integrating the SHAP and LIME techniques, they achieved better classification performance while
significantly lowering the dimensionality of the hyperspectral input data. Such approaches not only
build trust in Al-based decisions but also improve model performance by eliminating noise or
redundant information. Arrighi et al., [81] recently systematically reviewed and categorized XAl
approaches for food datasets and provided a framework for choosing the right interpretability
methods based on model type, food matrix complexity, and application intent. The use of such
approaches is likely to become a routine requirement for ML models employed in food quality control
and contamination risk evaluation.

At the same time, there is a growing need for reproducible and automated machine learning
pipelines. Spectral models must be retrained periodically due to changes in food matrices, sensor
settings, or environmental conditions. Software frameworks like TensorFlow Lite, MLflow, and ONNX
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Runtime are designed to meet this need by providing model versioning features, performance
monitoring metrics, and automated retraining cadences. These frameworks also provide continuous
concept drift detection, which is critical in cases where patterns of contamination are seasonal-based
or where new supply chains are added to the system. By integrating such deployment frameworks
into food inspection workflows, models can be updated with minimal user effort or intervention and
hence attain scalability and long-term sustainability.

Lastly, the value of open-access spectral archives is increasingly being appreciated. The
reproducibility of contemporary research is often marred by proprietary data and inconsistent
acquisition protocols. Initiatives to develop shared spectral repositories with contaminant levels,
sample data, and sensor data annotations is becoming critical in facilitating benchmarking and
transfer learning. The datasets can standardize preprocessing for any data across the board and
enhance model generalization across food groups and geographies. Furthermore, the availability of
datasets will facilitate the development of machine learning infrastructures that can be tested and
certified for commercial applications across institutions.

Briefly, the convergence of machine learning and spectroscopy for food contamination detection
is moving toward deployable, explainable, and privacy-aware systems. Developments in TinyML,
federated learning, explainable Al, modular deployment software, and shared data infrastructures
are not only enhancing technical capability but also overcoming the practical constraints in the
context of food safety monitoring. Interdisciplinary collaboration will be central to be globally
scalable and compliant with regulatory standards, hiring food scientists, machine learning engineers,
software developers, and policymakers on a common mission of secure, transparent, and intelligent
food quality assurance.

7. Conclusions

The integration of spectroscopy and machine learning (ML) has provided a new era of non-
destructive, rapid, and intelligent food contamination analysis. This review critically examined the
spectroscopic method repertoire ranging from traditional NIR, FTIR, and UV-Vis to more advanced
Raman and hyperspectral imaging and their complementary application with ML algorithms for
classification, quantitation, and anomaly detection in foods. The experiments on microbial, chemical,
and physical contaminants have demonstrated that the synergy between spectral resolve and smart
data analysis has the potential to outperform conventional laboratory-based assays as real-time,
scalable, and portable diagnostic tools. Despite this progress, several interrelated challenges remain.
They include spectral variation, small, annotated datasets, model transferability, real-time edge
deployment challenges, and the absence of standardized acquisition and preprocessing protocols.
New technologies like TinyML, federated learning, XAl, and open-access collaborative databases hold
the key to revolutionary solutions for such challenges. Yet, interdisciplinary collaboration would still
be required to close the gap with deployable and regulation-compliant systems. The strategy for ML-
based food safety spectroscopy requires scalable system design, interpretable modelling pipelines,
and harmonized evaluation frameworks. Investments in edge cloud hybrid architectures, cross-
domain spectral modelling, and open benchmarking datasets are crucial. The intersection of
analytical chemistry, computer vision, embedded systems, and food regulatory science will enable
the future of food safety monitoring to transition from reactive risk management to proactive, global,
smart surveillance systems with worldwide reach.
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