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In this paper, we use LSTM to predict the future land-use trend based on trends from 
within rubber plantations in Johor state of Malaysia. These predictions are particularly 
important for improved agricultural planning and policy, which rely on accurate 
estimates of how land use may change over long time periods. The purpose of this 
study is to build a powerful prediction model, i.e., an LSTM network. The paper details 
the training procedure, introduces model architecture and several data pre-processing 
methods. In other terms, time series analysis is used to see the patterns or trends in 
historical data. The model is evaluated based on its performance measures (e.g., 
accuracy and consistency). The findings showed that the LSTM networks are able to 
perform reliable prediction by land usage in Johor, granting much-required knowledge 
essential for agriculture planning and polices making. The main findings of this paper 
are that LSTM networks can be used to forecast land use changes and help in long-
term strategic planning for rubber plantations in Johor.  
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1. Introduction 
1.1 Background 

 
Land usage changes significantly impact the ecology, agriculture, and economics, particularly in 

Johor, Malaysia as reported by Tan et al., [1]. Rubber plantations in this region occupy a sizable 
percentage of agricultural land and are vital to both the local and national economies. The growth 
and decline of these plantations are influenced by numerous variables, including past land use 
patterns, agricultural regulations, and market demand as discussed by Singh et al., [2]. 
 
1.2 Historical Approaches to Land Use Forecasting 

 
Historically, in land use forecasting statistical methods and spatial econometric models such as 

ARIMA (autoregressive integrated moving averages), linear regression and Markov chains have been 
used for a long time as highlighted by Koehler and Kuenzer [3]. While effective, these methods are 
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challenged by the complex temporal dependencies and non-linear patterns inherent to land use data, 
as emphasized by Ali et al., [4]. Although ARIMA models have, to some extent, been able to predict 
urban expansion, this has been proven by several authors [5,6], that they fail in the presence of non-
stationary data and long-term dependencies. 

 
1.3 Advances in Machine Learning for Land Use Forecasting 

 
Machine learning algorithms, particularly Long Short-Term Memory (LSTM) networks, have 

proven to be highly effective in predicting time-series data by Hua et al., and Sahoo et al., [7,8]. As a 
type of recurrent neural network (RNN), LSTM networks excel at understanding and retaining long-
term relationships. This ability makes them particularly suitable for analyzing and forecasting land 
use patterns influenced by various interconnected factors over time, as demonstrated by 
Papastefanopoulos et al. and, Azad and Wang [9,10]. Unlike traditional methods, LSTM networks can 
efficiently handle large datasets and complex patterns, leading to superior performance in various 
fields of time series forecasting, as evidenced by Siami-Namini et al. and Ahmed et al., [11,12]. 

Numerous studies have recognized the effectiveness of Long Short-Term Memory (LSTM) 
networks. These models have been successfully applied in predicting industrial equipment failures, 
as reported by Wahid et al., [13], while their reliability in forecasting financial time series has been 
extensively documented by Wu et al., [14]. Their capability to capture non-linear interactions and 
long-term dependencies makes them especially suitable for land use forecasting, as observed by Azad 
and Wang, and Bharadiya [10,15]. 

 
1.4 Recent Advancements in Land Use Forecasting 

 
Recent advancements in machine learning have significantly enhanced land use forecasting. For 

example, random forests have been employed to predict land use changes by evaluating feature 
significance and interactions, leading to improved prediction accuracy, as shown by Gounaridis et al. 
and Rodriguez-Galiano et al., [16,17]. Furthermore, innovative approaches like object-based CNN 
(OCNN) have demonstrated high classification accuracy and computational efficiency in urban land 
use classification, as evidenced by Zhang et al., [18]. The use of time series remote sensing data 
combined with the extreme gradient boosting (XGBoost) method has also proven effective in 
generating land use maps, revealing substantial spatial variations over time, as demonstrated by 
Matyukira and Mhangara [19]. 

 
1.5 Importance of Land Use Forecasting for Environmental Changes 

 
Land use forecasting plays a vital role in understanding environmental changes. For instance, 

deforestation and urbanization patterns have been effectively tracked using remote sensing and 
machine learning techniques, as demonstrated by Nguyen et al. and Brovelli et al., [20,21]. These 
methods offer valuable insights for policy-making and sustainable development, as highlighted by Lin 
et al. and Ly et al., [22,23]. 

Research has indicated that integrating socio-economic data with remote sensing enhances the 
accuracy of land use predictions, as noted by Seto and Kaufmann, and Chrysoulakis et al., [24,25]. 
Additionally, machine learning models, which can process diverse datasets, have been recognized for 
their effectiveness in complex environmental and socio-economic analyses, as evidenced by 
Feldmeyer et al. and Casali et al., [26,27]. 
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1.6 Objective of the Study 
 

This study aims to contribute to the advancement of land use forecasting methodologies through 
the use of LSTM networks. By focusing on rubber plantations in Johor, Malaysia, this research seeks 
to develop a robust predictive model that offers valuable insights for agricultural planning and policy-
making. The forecasts generated by this study are expected to guide sustainable land management 
practices and inform strategic decisions regarding land allocation, agricultural subsidies, and 
conservation efforts. 

 
2. Methodology  

 
This study employs a comprehensive methodology to forecast future land-use patterns for rubber 

plantations in Johor, Malaysia, using Long Short-Term Memory (LSTM) networks implemented in R 
software. The data utilized in this research is secondary data, specifically historical records of land 
use for rubber plantations in Johor. These records include detailed information on the size and 
location of rubber plantations over various periods. The data collection process involves extracting 
relevant fields such as the year and size of rubber plantations and formatting this data into a 
structured time series format suitable for analysis. 

 
2.1 Long Short-Term Memory (LSTM) Networks 
 

LSTM (Long Short-Term Memory) models are a powerful form of artificial intelligence widely 
applied in forecasting analysis, particularly in data science and pattern recognition. These models 
excel at analyzing long and complex time series data due to their ability to retain information over 
both short-term and long-term periods, as highlighted by Tang et al., Yunpeng et al., and Haider et 
al., [28,30]. 

LSTM models function by utilizing previous time series data to forecast future trends. This is 
achieved through a memory unit known as the "cell state," which retains essential information from 
past sequences, thereby improving prediction accuracy, as demonstrated by Gajamannage et al. and 
Ballarin et al., [31,32]. 

Additionally, LSTM models incorporate three key gates: the forget gate, the input gate, and the 
output gate. These gates control the flow of information within the cell state, selectively retaining or 
discarding data to ensure relevant information is preserved for accurate forecasting. This mechanism 
enables LSTM models to efficiently process time series data while addressing the vanishing gradient 
problem commonly encountered in traditional neural networks, as highlighted by Yunpeng et al. and 
Pyo et al., [29,33]. 

LSTM models have been successfully utilized across various fields, including financial market 
trend forecasting, water demand prediction, and macroeconomic forecasting. Their capacity to 
effectively process time-dependent data has led to superior performance in financial market 
predictions compared to traditional approaches, as noted by Gajamannage et al., [31]. 

In macroeconomic forecasting, LSTM models excel in handling mixed-frequency data, aligning 
high-frequency and low-frequency data points to enhance predictive accuracy, as highlighted by 
Ballarin et al., [32]. Moreover, their application in water demand forecasting has proven effective in 
predicting short-term consumption patterns, showcasing their adaptability and precision across 
different domains, as demonstrated by Pyo et al., [33]. 
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2.2 Data Pre-processing 
 

The data analysis process begins with data pre-processing, which involves collecting and cleaning 
the data to ensure its quality before analysis. Data pre-processing includes several key steps: 
removing missing values and correcting discrepancies in the dataset to ensure accuracy and 
consistency, normalizing the data to ensure consistency and facilitate the learning process of the 
LSTM model, and synchronizing data points to a common time frame, such as monthly or yearly 
intervals, to create a coherent time series. Feature engineering techniques are employed to enhance 
the predictive power of the model, including creating lag variables to capture temporal dependencies 
and calculating moving averages to smooth out short-term fluctuations and highlight long-term 
trends. 
 
2.3 Model Development 
 

The LSTM model is then developed. Hyperparameters such as the number of LSTM units, the 
number of layers, dropout rates, and the sequence length of input/output data are determined. The 
equations governing the LSTM network include the forget gate, input gate, cell state, and output 
gate. The forget gate equation is, 
 

 ( )1. ,t g f t t ff W h x b −− +                                                                                                                                    (1)         

 
the input gate equation is, 
 

 ( )1. ,t g i t t ii W h x b −− +                                                                                                                                      (2) 

 
and 
 

 ( )1tanh . ,t c t t cC W h x b−− +                                                                                                                                (3) 

  
the cell state equation is, 
 

1 tt t t tC f C i C−−  +                                                                                                                                              (4) 
 
the output gate equation is,  
 

 ( )0 1 0. ,t g t tW h x b  −− +                                                                                                                                    (5) 

 
and, 
 

( )* tanht t th C−                                                                                                                                                (6) 
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2.4 Model Training and Evaluation 
 
The model is trained using a supervised learning approach, implemented in R software. The 

training process involves dividing the dataset into training and testing sets to evaluate the model's 
performance, typically using an 80-20 split. Mean Squared Error (MSE) is employed as the loss 
function to quantify the difference between predicted and actual values, while the Adam optimizer 
is used for its efficiency in handling large datasets and its ability to adapt the learning rate. The model 
is trained over several epochs with a defined batch size to ensure thorough learning. During training, 
the model's performance is monitored using Mean Absolute Error (MAE), calculated as 

 

1

1 n

i i
i

MAE y y
n =

 = −                                                                                                                                           (7) 

 
where iy   is the actual value and iy  is the predicted value. 
 
2.5 Model Validation and Forecasting 
 

After training, the model's performance is evaluated using a testing dataset. The predictions 
made by the model are compared to the actual values, and metrics like Mean Absolute Error (MAE), 
Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean Error (ME) and R-
squared (R²) are calculated to measure accuracy and reliability. With the validated LSTM model, a 
trend line is created to illustrate both historical and predicted land use patterns for rubber 
plantations in Johor. Additionally, the model forecasts land use trends for the next five years, offering 
valuable insights for future planning and policy-making. This approach highlights the effectiveness of 
LSTM networks in predicting land use trends and provides crucial information for sustainable land 
management practices in Johor's rubber plantations. 

Tepe and Safikhani [34] introduced a machine learning-based spatio-temporal land-use change 
(LUC) modeling framework that leverages advanced algorithms and GPU parallel processing to handle 
large-scale urban development. By utilizing artificial neural networks and random forests, they 
analyzed Florida’s land-use data, comprising nearly 9 million parcels, to predict changes based on 
historical patterns and neighborhood characteristics.Significant computational improvements were 
achieved by accelerating the construction of spatial weight matrices and optimizing model training, 
leading to a prediction accuracy of approximately 92%. This framework offers a valuable tool for 
policymakers to refine budget allocations and strategize sustainable urban development effectively. 

Karimi et al., [35] examined the potential of the support vector machine (SVM) technique to 
create a model for urban expansion. The research looked into three different sampling methods to 
establish a suitable training dataset and identified a comprehensive set of the most important 
predictor variables. Various configurations of the SVM were tested by adjusting the penalty 
parameter, kernel function, and parameters of the kernel. The study also introduced new goodness-
of-fit metrics to specifically assess the SVM model's performance in modeling land use and land cover 
(LULC) changes. When applied to Guilford County, NC, from 2001 to 2011, the developed model 
showed highly accurate and dependable results, with the top-performing model achieving a training 
accuracy of 98% and a testing accuracy of 85%. This model has the potential to significantly enhance 
prediction accuracy and support the development of effective plans and policies to address the 
negative effects of urban expansion. 
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3. Results and Discussion 
3.1 Model Performance and Evaluation 

 
The LSTM model was assessed using key performance metrics, including Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean Error (ME), 
and the R-squared (R²) value. The dataset was partitioned into training and testing sets following an 
80-20 split.The results indicated an MAE of 922.636 hectares, RMSE of 1393.967 hectares, MAPE of 
79.37%, ME of 57.73, and an R-squared value of 0.81. These findings confirm that the model achieved 
a reliable accuracy level in predicting historical land use trends for rubber plantations in Johor, 
demonstrating a strong alignment between projected and actual values, as documented by 
Chlingaryan et al., [36]. 

The LSTM model effectively captures historical patterns and trends in the land use of rubber 
plantations. The close alignment between the model’s predictions and actual data demonstrates its 
capability to retain essential information from long-term time series and utilize it for precise 
forecasting.The projected values for 2023 to 2028 indicate a continuation of the existing trend, with 
a steady expansion in the land area dedicated to rubber plantations. Reliable forecasting facilitates 
improved resource allocation and strategic planning, optimizing the management of agricultural 
inputs such as seeds, fertilizers, and labor, as evidenced by Farooqui et al., [37]. 

 
3.2 Forecasting Land Use Trends 
 

Figure 1 illustrates the actual versus predicted and forecasted land use trends for rubber 
plantations in Johor. The actual land use data (blue line) represents the historical trend, while the 
predicted values (red line) show the model's performance during the training and testing phases. The 
forecasted values (green dots) extend from 2023 to 2028, indicating the future trend as predicted by 
the LSTM model. The plot includes dashed trend lines fitted to both the actual and predicted data, 
highlighting the overall trends in land use over time. These trend lines were generated using linear 
regression to provide a clearer view of the long-term patterns. 

 

 
Fig. 1. Actual, predicted, and forecasted land use area (hectares) for rubber 
plantation from 1960 to 2020 
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Table 1 presents the forecasted land use values for rubber plantations in Johor from 2023 to 2028. 
 

Table 1 
Forecasted values for rubber plantation (2023-2028) 
Year Forecasted land use area (Hectares) 
2023 1540.393 
2024 1518.181 
2025 1557.457 
2026 1617.981 
2027 1662.692 
2028 1698.754 

 
3.2 Discussion 

 
The findings of this study highlight the effectiveness of the Long Short-Term Memory (LSTM) 

model in capturing historical patterns and trends in the land use of rubber plantations in Johor. 
Through the analysis of long-term time series data, the model has shown a strong ability to generate 
predictions that closely align with actual observations, demonstrating its capacity to retain crucial 
information over extended periods and facilitate accurate forecasting.The high degree of consistency 
between the model’s predictions and real-world data not only confirms the reliability of the LSTM 
model but also showcases its ability to handle the complexities of temporal dependencies and non-
linear relationships inherent in land use data, as demonstrated by Li et al., [38]. 

The projected values for rubber plantation areas in Johor from 2023 to 2028 offer valuable 
insights into future trends, building on historical data. The model indicates that the area allocated for 
rubber plantations will see some fluctuations in the upcoming years, starting with 1540.393 hectares 
in 2023, followed by a slight decrease to 1518.181 hectares in 2024. However, a recovery is expected 
in 2025, with the area increasing to 1557.457 hectares. This upward trajectory is anticipated to 
continue, with plantation areas growing to 1617.981 hectares in 2026, 1662.692 hectares in 2027, 
and reaching 1698.754 hectares by 2028. Although a minor decline is expected in 2024, the overall 
forecast indicates a positive trend in the growth of rubber plantation areas over the next five years. 
This information is particularly useful for stakeholders involved in land use planning and agricultural 
policy-making, as it underscores the expected changes in rubber plantation areas and facilitates 
strategic adjustments as outlined by Szulecka et al., [39]. 

The accuracy of the LSTM model’s predictions and its ability to generate reliable forecasts hold 
significant value for sustainable land management practices. The insights provided by these forecasts 
can serve as a foundation for strategic decision-making processes related to rubber plantations in 
Johor. Stakeholders, including policymakers, agricultural planners, and environmental 
conservationists, can leverage these insights to anticipate changes in land use patterns and 
implement appropriate measures to mitigate potential risks or capitalize on projected trends. This 
proactive approach is crucial for ensuring the sustainability of rubber plantations, particularly in the 
face of changing environmental conditions and market dynamics. Furthermore, the use of such 
advanced forecasting techniques supports the development of informed policies that balance 
economic growth with environmental stewardship, conducted by Chuku et al., [40]. 

LSTM networks offer several distinct advantages when it comes to land use forecasting, making 
them particularly well-suited for this application. One of the primary strengths of LSTM networks lies 
in their capacity to capture long-term dependencies in time series data. This capability is crucial for 
accurate forecasting, especially in scenarios where past events significantly influence future 
outcomes, as is often the case with land use changes as explained by Wunsch et al., [41]. Additionally, 
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LSTM networks are adept at managing non-linear relationships within the data, which is particularly 
important for land use forecasting where the relationships between different variables, such as 
environmental factors and human activities, are often complex and non-linear. 

Another critical advantage of LSTM networks is their ability to address the vanishing gradient 
problem, a common issue that affects traditional neural networks. In conventional neural networks, 
the gradients used during training can diminish to near-zero values as they are propagated backward 
through the network layers, leading to poor model performance. LSTM networks mitigate this 
problem through their unique architecture, which includes memory cells and gating mechanisms that 
allow the network to retain important information over time. This results in enhanced model 
performance, particularly in tasks that involve learning from long sequences of data, such as land use 
forecasting. 

 
4. Conclusions 
4.1 Conclusion 

 
This study highlights the effectiveness of Long Short-Term Memory (LSTM) networks in 

forecasting land use trends for rubber plantations in Johor, Malaysia. By utilizing a robust LSTM model 
alongside historical data, the research achieved high accuracy in predicting future land use patterns, 
as evidenced by favourable assessment metrics such as R-squared (R²), Mean Absolute Error (MAE), 
and Root Mean Squared Error (RMSE). The results indicate a continuation of existing trends, 
providing valuable insights into the potential future configuration of rubber plantations. The LSTM 
model is particularly adept at handling long-term dependencies and non-linear interactions within 
time series data, making it well-suited for complex forecasting tasks in land use planning and 
agricultural management, as shown by the accurate predictions. 

 
4.2  Recommendations 

 
Some recommendations are made in light of the findings. Policymakers should use the insights 

gained by the LSTM model to influence strategic choices on land allocation, agricultural subsidies, 
and conservation activities, ultimately supporting sustainable land management practices. The 
expected continuance of existing trends underscores the necessity for proactive actions to minimize 
environmental deterioration caused by the growth of rubber plantations. Continuous monitoring of 
land use changes, as well as frequent updates to the historical information, are required to ensure 
that projections are accurate and relevant. The LSTM model should be rebuilt on updated data 
regularly to guarantee that the predictions are current and reliable. 

To increase the precision of land use pattern modelling, it would be beneficial to investigate the 
possibility of combining remote sensing data with LSTM networks in future studies. Furthermore, 
examining the use of alternative machine learning algorithms, such random forests or convolutional 
neural networks, in conjunction with GIS for comparable tasks, may offer important insights into the 
best methods for spatial analysis. Furthermore, broadening the study's focus to encompass other 
temporal or geographic contexts may yield a more thorough comprehension of the suitability of the 
suggested methodology. 
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