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optimization framework that integrates Genetic Algorithms (GA) with the
Negative Binomial distribution to enhance resource allocation for dengue
management in Kedah, Malaysia, from 2011 to 2023. The model incorporates
constraints on manpower, insecticides, and budget, with the objective of
maximizing fogging coverage while prioritizing high-burden areas as classified
by the Dengue Monitoring and Surveillance System (DMOSS). Three GA
configurations were tested, varying population size, mutation rate, and
crossover probability, and results were compared to the baseline allocation.
The findings reveal that GA-based optimization outperforms static allocation
strategies by directing more resources to high-severity districts, thereby
increasing severity-weighted effective coverage. Among the tested
configurations, the model with a population size of 100 (Trial c) achieved the
highest fitness value (4.7743), covering 5,572.71 km? with 3,486.54 km?
severity-weighted coverage. The results demonstrate the potential of

Keywords: combining probabilistic severity modeling with metaheuristic optimization to
Resource allocation; dengue management; improve the efficiency and equity of dengue control interventions, offering a
Negative Binomial replicable approach for other vector-borne disease management contexts.

1. Introduction

Dengue fever, a debilitating illness caused by the dengue virus, presents a significant and growing
threat to public health, especially in tropical and subtropical regions. The virus’s transmission hinges
on the activity of Aedes mosquitoes, notorious for their breeding habits in stagnant water. This makes

* Corresponding author.
E-mail address: shari990@uitm.edu.my

https://doi.org/10.37934/arbms.38.1.102114

102


https://karyailham.com.my/index.php/arbms/index

Journal of Advanced Research in Business and Management Studies
Volume 38, Issue 1 (2025) 102-114

densely populated urban areas particularly susceptible to outbreaks. According to the World Health
Organization (WHO), dengue has ascended to one of the fastest-proliferating mosquito-borne
diseases, with an estimated 390 million infections occurring globally each year [1]. This staggering
figure underscores the substantial strain dengue places on healthcare systems worldwide,
highlighting the urgency of optimizing resource allocation for effective dengue management. Such
optimization is crucial in minimizing the disease's impact and bolstering the efficiency of outbreak
response measures.

Navigating the complexities of effective resource allocation requires a nuanced understanding of
a myriad of factors. These include the severity of the disease, population density, the capacity and
infrastructure of local healthcare systems, and the dynamic nature of dengue transmission.
Traditional resource allocation strategies often fall short, relying on static methods that fail to
capture the fluid and unpredictable nature of outbreak dynamics [2]. In contrast, contemporary
approaches increasingly prioritize innovative solutions that leverage advanced algorithms and data-
driven insights. These cutting-edge methods hold promise for more accurately predicting and
managing the spread of dengue, thereby enhancing the overall effectiveness of public health
interventions. This study endeavors to address a notable gap in the current body of literature by
systematically comparing various optimization models for resource allocation in dengue
management. Specifically, it examines the efficacy of GA-based on statistical distribution models
namely Negative Binomial distributions. By employing a comprehensive and multi-faceted approach,
this research seeks to identify the most effective methods for resource distribution based on the
severity of the disease. The ultimate goal is to contribute to the development of more efficient and
targeted public health interventions, thereby enhancing the capacity to manage and mitigate the
impact of dengue outbreaks.

2. Literature Review

Genetic Algorithms in Resource Optimization Genetic algorithms (GAs) have garnered
widespread recognition for their efficacy in tackling intricate optimization challenges across various
domains, such as operations research, engineering, and public health. Inspired by the principles of
natural selection, GAs employ a population-based search strategy that enables the exploration of
vast solution spaces with remarkable efficiency. Recent studies have underscored the potential of
GAs in resource allocation for a range of public health crises, including disaster response and
epidemic management [3][4].

In the realm of dengue management, GAs exhibits the capacity to optimize resource
distribution by considering multiple criteria, such as disease severity, geographic distribution of
cases, and availability of resources. The inherent flexibility of GAs facilitates the development of
adaptive solutions that can accommodate the dynamic nature of outbreak patterns [5]. Moreover,
the integration of GAs with machine learning techniques has shown considerable promise in
enhancing the predictive accuracy of resource allocation models, thereby improving the overall
effectiveness of public health interventions [6][7].

k-Nearest Neighbors in Epidemiology k-Nearest Neighbors (kNN) is a prominent supervised
learning algorithm, celebrated for its straightforwardness and efficacy in both classification and
regression tasks. Within the field of epidemiology, kNN has been utilized to forecast disease
outcomes based on historical data, leveraging the proximity of cases within a multi-dimensional
feature space [8][9]. Despite its strengths, kNN is not without limitations, particularly when applied
to high-dimensional datasets where the curse of dimensionality may compromise accuracy [10]. In
the context of dengue, were case data exhibit significant variability and spatial dependence, the
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effectiveness of kNN may be constrained. This necessitates the exploration of more robust modeling
approaches, such as statistical distribution models, to achieve better predictive performance and
resource allocation [11].

Recent advancements in research have highlighted RWM's potential in balancing trade-offs
between resource availability and public health needs, providing a structured framework for
decision-making in complex scenarios [12][13]. Nevertheless, the application of RWM in the
management of infectious diseases, particularly in dengue resource allocation, remains relatively
unexplored and merits further investigation.

Count data models, including the Negative Binomial and Geometric distributions, are
instrumental in accurately capturing the underlying characteristics of disease incidence, particularly
in scenarios marked by over-dispersion [14]. The Negative Binomial distribution is especially
beneficial for modeling count data where the variance surpasses the mean, a common occurrence in
dengue cases characterized by sporadic outbreaks and variable severity [4][15].

The Geometric distribution, which models the number of trials until the first success, is also
applicable in understanding the interval until the first reported case in an outbreak. Incorporating
these statistical models into resource allocation frameworks has demonstrated improved predictive
accuracy and enhanced the allocation of healthcare resources during dengue outbreaks [16][17]. This
underscores the necessity of integrating statistical methodologies with machine learning models to
optimize public health responses effectively [18].

While numerous studies have delved into optimization methods within the realm of public
health, there is a notable scarcity of comprehensive comparisons between different models for
resource allocation specifically targeting dengue management. Prominent works have employed
machine learning techniques to predict disease outbreaks and optimize resource distribution, setting
the stage for more advanced approaches [19][20]. For instance, [21] delved into the potential of
ensemble machine learning methods for predicting dengue incidence, underscoring the necessity of
integrating predictive models within resource allocation frameworks.

Expanding on this foundation, [22] explored the optimization of vector control strategies
through a multi-objective genetic algorithm, illustrating the critical role of resource allocation
efficiency in managing mosquito populations. Although these studies offer invaluable insights, they
fall short of providing a comparative analysis of machine learning models alongside statistical
distribution methods—a gap this paper aims to address [1][23].

The fusion of statistical models with machine learning techniques has demonstrated
considerable promise in enhancing healthcare resource allocation across diverse scenarios ([23][24].
Nevertheless, there remains a pressing need for a comprehensive understanding of how these
integrated models can be effectively applied to dengue-specific resource allocation. This research
presents an opportunity to fill this void by systematically evaluating the performance of different
optimization models.

3. Methodology
3.1 Data Processing

The data used in this study was collected from various mukims and districts, including the
number of dengue cases, manpower availability, insecticides, and budget for resource allocation.
Severity was calculated using historical case data, population density, and health infrastructure in
each area. Data preprocessing involved normalization and handling of missing values to ensure
accuracy in model performance.
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The kNN method computed severity based on the distance to the nearest neighbors, which
can be influenced by the distribution of cases in adjacent areas. RWM assigned weights to areas
based on disease severity and population density, allowing for a nuanced understanding of resource
needs.

Number of dengue cases registered from 2011 to 2023 for State of Kedah were collected, with
the severity level of each district differs. The severity level is determined by DMOSS classification as
shown in Table 1. By taking dengue cases from 2011 to 2023, only Kuala Muda (KM) is categorized as
district with high burden of dengue cases, followed by Baling (BL), Kota Setar (KS), Kubang Pasu (KB)
and Kulim (KL)as districts with moderate burden of dengue cases (Refer Table Il). The rest of districts
were categorized as low burden (Bandar Baharu (BB), Langkawi (LG), Padang Terap (PT), Pendang
(PG), Sik (SK) and Yan (YN)). The data on dengue occurrences were collected Referring to DMOSS
Orientated Dengue Preventive Activities, the locality classification is as shown in Table 2. In 2023,
according to the number of dengue cases registered in that particular year, UKPBV, KKM concluded
that Kuala Muda (KM), Kulim (KL) and Kota Setar (KS) were categorized as districts with high burden
of dengue cases, then Baling, Kubang Pasu (KP) and Langkawi (LG) as moderate burden. The rest of
districts were categorized as low burden (Bandar Baharu (BB), Padang Terap (PT), Pendang (PG), Sik
(SK) and Yan (YN)) [25].

Table 1
DMOSS Locality Stratification
Categories Description
High burden (B1) More than equal to 7 cases per week
Moderate burden (B2) More than equal to 1.7 cases per week
Low burden (B3) Less than 1.7 cases per week
Table 2
DMOSS Locality Stratification by District
District BL BB KS KM Kp KL LG PT PG SK YN
Moderate Low Modera High Moder Moder
. Low Low Low Low Low
Severity te ate ate

*Data of cases from ME 1 2011 to ME52 2023
*total weeks from year 2011 to 2023 = 678 weeks
*(total accumulated cases from year ME 1 2011 to ME 52 2023/cumulative number of weeks)

3.2 The Model

The optimization problem included constraints on the available manpower, insecticides, and
budget. These resources were distributed across districts and mukims based on the output of each
model, and the GA optimized the allocation by minimizing a weighted objective function that
balanced case severity with resource capacity. The fitness function used was formulated to minimize
the total dengue cases while considering the constraints of available resources. This approach aimed
to reflect real-world priorities and ensure that high-severity areas received adequate resources.
Objective function: To maximize the coverage area (in km?) of fogging activities in each area within
each district.
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Table 3
List of districts, i

District

Baling

Bandar Baharu

Kota Setar

Kuala Muda

Kubang Pasu

Kulim

Langkawi

Padang Terap

Pendang

Ol N| O U B|W[IN|F

Sik

=
o

Yan

[y
[y

Let X; represent the coverage in km? of fogging activity in District i, where i ranges from 1 to 11

representing the districts listed.

Objective function to maximize the coverage of fogging activities:
Maximize Z = ¥}1, x;;

Subject to the following constraints:

Constraints of single-objective optimization

(Eq 1)

Total manpower at each district, 4;: (Eq 2)
Ay <22
A, < 14
Az < 24
A, < 34
As; <18
Ag < 26
A; < 12
Ag < 18
Ag < 14
A= 16
A1 < 8
Total manpower constraint:
Ay +Ay + -+ A41 <206 (Eq 3)
District-specific insecticide constraints:
Sik < Stock of insecticide type k in District i (Eq 4)
k= k=2 k=3
Gokilahts Malathion TG Actellic 50EC
S11 < 278.56 S1, < 106.76 S13 <16.64
S,1 <67.52 S,, <14.40 S,3 <10.00
S31 <835.00 S3, <220.00 S33 <60.00
S41 <939.00 S42 <191.00 S43 <36.00
S51 <415.00 S5, <90.00 S53 <22.00
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S¢1 <574.75 Sez < 225.40 Se3 < 7.50
S71 < 289.30 S, <24.00 S,3 <3.84
Sg1 <51.34 Sgo < 0.00 Sgz <0.00
S91 < 128.96 S9, <55.84 S93 <10.00
S101 < 80.21 S102 =0.00 S103 <0.00
S111 <57.36 S112 £7.20 S113 <0.00
Where:
11
Si1 <3717.00 litres
o
Si» <934.60 litres
i=1
11

Si3 < 165.98 litres
=1

i=

Total stock of insecticides constraint:

S1+S8,+-+ 811 <4817.58 litres (Eq 5)

Budget constraints, C;: (Eq 6)
C; <104,931.44
C, < 52,465.72
C; < 157,397.17
C, < 157,397.17
Cs; < 52,465.72
Ce < 157,397.17
C; < 52,465.72
Cg < 52,465.72
Cy < 52,465.72
Cio < 52,465.72
Ci1 < 52,465.72

3.3 The GA Setting

The Genetic Algorithm (GA) was configured as specified in Table 4. These parameter choices
are based on prior research indicating their effectiveness in convergence speed and optimization
guality. The population size was selected to ensure diversity in the solution space while maintaining
computational efficiency. The number of runs was increased to capture variability in results and
ensure robust conclusions. Maximum iterations were set to allow adequate exploration of the
solution space. The mutation rate was varied to prevent premature convergence and to encourage
exploration, while the crossover rate was adjusted to enhance the mixing of genetic information
among solutions. Assume that the number of dengue cases in each mukims follows the negative
binomial distribution, the Parameters setting for Negative binomial distribution.

The Negative Binomial distribution is particularly effective for count data where variance
exceeds the mean, making it a suitable choice for dengue case data characterized by outbreaks of
varying intensity [26]. The choice of severity calculation method impacts resource allocation
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strategies, as different models may emphasize different aspects of the data, leading to varying
recommendations for resource distribution.

Table 4
GA Setting
Parameter Arguments in R Description #
tested
Type of GA type The type of genetic algorithm to be run "binary"
depending on the nature of decision for binary
variables. representations of
decision variables.
Fitness Function fitness The fitness function, any allowable R R5
function which takes as input an
individual string representing a potential
solution and returns a numerical value
describing its ““fitness'".
Number of bits nBits A value specifying the number of bits to Number of rows in the
be used in binary encoded optimizations. | dataset; nrow(dataset)
Number of popSize An R function for randomly generating an (10,50,100)
population initial population.
Maximum maxiter The maximum number of iterations to 4000
iteration run before the GA search is halted.
Number of runs run The number of consecutive generations 4000
without any improvement in the best
fitness value before the GA is stopped.
Probability of pmutation The probability of mutation in a parent 0.1,0.2,0.3,0.4,0.5
mutation chromosome. Usually, mutation occurs
with a small probability, and by default is
setto 0.1.
Probability of pcrossover The probability of crossover between 0.1,0.2,0.3,0.4,0.5
crossover pairs of chromosomes. Typically, this is a
large value and by default is set to 0.8.

The fitness function used in the GA-based Negative Binomial model is designed to assess the
efficiency of resource allocation across mukims based on the severity of dengue outbreaks. The
process begins by ranking the mukims according to the number of dengue cases, where higher case
numbers receive a higher priority (lower rank number). These ranks are inverted and normalized into
weights, where mukims with more severe outbreaks (higher case counts) are given larger weights,
ensuring that resources are proportionally allocated based on severity. The Negative Binomial
distribution is applied to model the severity of dengue in each mukim. This distribution is well-suited
for count data with over-dispersion, a common characteristic of dengue outbreaks where variance
exceeds the mean. The size_param in the distribution represents the number of successes required,
and the prob_param is the probability of success on each trial. The function uses these parameters
to generate random values representing the severity of outbreaks in each mukim.

In terms of resource allocation, the fitness function calculates the total coverage, manpower,
insecticide (three types), and budget allocated to each district. Resources are distributed based on
the severity-weighted coverage, ensuring that high-severity mukims receive more attention. The
function also imposes constraints on the total manpower (206), insecticide (different limits for each
type), and budget (RM 944,383). If any allocation exceeds these limits, the fitness function returns -
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Inf, penalizing invalid solutions. Ultimately, the fitness value returned is the severity-weighted total
coverage, with higher values representing more efficient and effective resource allocations.

5. Results and Discussion

The original resource allocation (refer Table 5) across the 11 districts serves as the baseline
for comparison. This allocation, which distributes manpower, insecticide, and budget without
optimization, offers a reference point for understanding the effectiveness of the genetic algorithm
(GA) outputs. For instance, Kota Setar was allocated 35 personnel, 835 litres of Insecticide 1, 220
Liters of Insecticide 2, and 60 litres of Insecticide 3, with a total budget of RM 157,397.17. Meanwhile,
Baling was allocated 8 personnel and RM 104,931.44. These allocations are not influenced by any
algorithmic optimization based on dengue case severity or variability.

Table 5
Original Resources Allocation
District # Mukims Manpower Insecticide 1 Insecticide 2 Insecticide 3 Budget
Baling 8 22 278.56 106.76 16.64 104,931.44
Bandar Baharu 8 14 67.52 14.40 10.00 52,465.72
Kota Setar 35 24 835.00 220.00 60.00 157,397.17
Kuala Muda 16 34 939.00 191.00 36.00 157,397.17
Kubang Pasu 21 18 415.00 90.00 22.00 52,465.72
Kulim 16 26 574.75 225.40 7.50 157,397.17
Langkawi 6 12 289.30 24.00 3.84 52,465.72
Padang Terap 11 18 51.34 0.00 0.00 52,465.72
Pendang 8 14 128.96 55.84 10.00 52,465.72
Sik 4 16 80.21 0.00 0.00 52,465.72
Yan 5 8 57.36 7.20 0.00 52,465.72
Total 138 206 3,717.00 934.60 165.98 944,383.00

Count data models, such as the Negative Binomial and Geometric distributions, are essential
for accurately capturing the nature of disease incidence, particularly in situations where over-
dispersion occurs [14]. In this study, a Genetic Algorithm (GA) approach was applied to optimize
resource allocation across districts and mukims, incorporating the Negative Binomial distribution to
account for dengue severity. This approach prioritizes high-risk areas using probabilistic severity
scores, enhancing the efficiency of resource distribution. A total of 75 trials were conducted, varying
population sizes (10, 50, 100), mutation rates, and crossover probabilities (ranging from 0.1 to 0.5),
with each trial run for 4000 iterations. The best-performing model for each population size, based on
the highest fitness value, was selected, resulting in the top 3 models (a, b and c).
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Table 6

Allocation using Negative Binomial (three specifications 1, b and c)

Negative Binomial — using Fitness Function R5_nb

Trial a b c
Population Size 10 50 100
Makx Iterations 4000 4000 4000
Number of runs 4000 4000 4000

Probability of mutation 0.1 0.4 0.3
Probability of crossover 0.5 0.5 0.4

Total Mukims Allocated

67 out of 138 mukims

77 out of 138 mukims

80 out of 138 mukims

Total Area Covered (km?) 4,611.34 km? 4,391.54 km? 5,572.71 km?
Total Effective Coverage Area (km?) 3,198.28 km? 2,976.08 km? 3,932.10 km?
Total Severity-Weighted Effective 2,624.08 km? 2,637.50 km? 3,486.54 km?
Coverage Area (km?)
Total Manpower 104 people 108 people 114 people
Total Insecticide 1 (litres) 1,893.99 litres 2,041.32 litres 2,138.32 litres
Total Insecticide 2 (litres) 481.06 litres 526.54 litres 541.75 litres
Total Insecticide 3 (litres) 84.69 litres 93.56 litres 99.43 litres
Total Budget (RM) RM 474,388.90 RM 518,283.50 RM 527,496.30
Time-elapsed (seconds) 69.11 seconds 259.49 seconds 452.54 seconds
Final Fitness Function Value 3.9428 4.3501 4.7743

Table 6 presents the resource allocation for each district for Trial a when using a population
size of 10, mutation probability of 0.1, and crossover probability of 0.5 in the GA optimization. In this
model, districts such as Kota Setar received significant resources, including 16 manpower, 381.71
litres of Insecticide 1, and a budget of RM 71,952.99. In contrast, districts like Sik received minimal
resources, with just 1 personnel and RM 13,116.43 in budget. In addition, there is no resources
allocated to Yan district. This model reflects a moderate allocation effort based on the severity of
dengue outbreaks across the districts.

Table 6
Resources Allocation by using Fitness Function Trial a (popsize=10, pmutation=0.1, pcrossover=0.5)
District Allocated Manpower Insecticide 1 Insecticide 2 Insecticide 3 Budget
Baling 5 14 174.10 66.73 10.40 65,582.15
Bandar Baharu 7 12 59.08 12.60 8.75 45,907.51
Kota Setar 16 11 381.71 100.57 27.43 71,952.99
Kuala Muda 9 19 528.19 107.44 20.25 88,535.91
Kubang Pasu 7 6 138.33 30.00 7.33 17,488.57
Kulim 9 15 323.30 126.79 4.22 88,535.91
Langkawi 4 8 192.87 16.00 2.56 34,977.15
Padang Terap 6 10 28.00 0.00 0.00 28,617.67
Pendang 3 5 48.36 20.94 3.75 19,674.65
Sik 1 4 20.05 0.00 0.00 13,116.43
Yan 0 0 0 0 0 0
Total 67 104 1,893.99 481.06 84.69 474,388.92
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Next, Table 7 shows the results from using Trial b of a population size 50, a mutation
probability of 0.4, and a crossover probability of 0.5. Here, the overall resource allocation is more
evenly distributed, with notable increases in manpower for districts like Kota Setar (24 personnel)
and a larger budget (RM 107,929.49). Sik, on the other hand, receive smaller allocations. The increase

in population size and mutation rate appears to provide more exploration of potential resource
distributions.

Table 7
Resources Allocation by using Fitness Function Trial b (popsize=50, pmutation=0.4, pcrossover=0.5)
District Allocated Manpower Insecticidel Insecticide2  Insecticide 3 Budget
Baling 3 8 104.46 40.04 6.24 39,349.29
Bandar Baharu 5 9 42.20 9.00 6.25 32,791.08
Kota Setar 24 16 572.57 150.86 41.14 107,929.49
Kuala Muda 7 15 410.81 83.56 15.75 68,861.26
Kubang Pasu 9 8 177.86 38.57 9.43 22,485.31
Kulim 10 16 359.22 140.88 4.69 98,373.23
Langkawi 4 192.87 16.00 2.56 34,977.15
Padang Terap 4 18.67 0.00 0.00 19,078.44
Pendang 6 11 96.72 41.88 7.50 39,349.29
Sik 1 4 20.05 0.00 0.00 13,116.43
Yan 4 6 45.89 5.76 0.00 41,972.58
Total 77 108 2,041.32 526.54 93.56 518,283.54

Finally, in Trial c, this model uses a larger population size of 100, with mutation and crossover
probabilities of 0.3 and 0.4, respectively (refer Table 8). The results show a substantial allocation of
resources to high-severity areas. For example, Kota Setar is allocated 23 personnel, 548.71 litres of
Insecticide 1, and a budget of RM 103,432.43. Smaller districts such as Sik and Yan receive fewer
resources. This model demonstrates a more focused allocation, with larger districts receiving the
majority of resources, which may reflect their higher disease severity.

Table 8
Resources Allocation by using Fitness Function Trial ¢ (popsize=100, pmutation=0.3, pcrossover=0.4)
District Allocated Manpower Insecticidel Insecticide2  Insecticide 3 Budget
Baling 3 8 104.46 40.04 6.24 39,349.29
Bandar Baharu 5 9 42.20 9.00 6.25 32,791.08
Kota Setar 23 16 548.71 144.57 39.43 103,432.43
Kuala Muda 9 19 528.19 107.44 20.25 88,535.91
Kubang Pasu 13 11 256.90 55.71 13.62 32,478.78
Kulim 9 15 323.30 126.79 4.22 88,535.91
Langkawi 3 144.65 12.00 1.92 26,232.86
Padang Terap 4 7 18.67 0.00 0.00 19,078.44
Pendang 6 11 96.72 41.88 7.50 39,349.29
Sik 2 8 40.11 0.00 0.00 26,232.86
Yan 3 5 34.42 4.32 0.00 31,479.43
Total 80 114 2,138.32 541.75 99.43 527,496.27
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When comparing the baseline resource allocation with the GA-optimized models above, the
differences are evident in both manpower and resource distribution. For example, Kota Setar
originally received 24 personnel, but under the GA optimization, it was allocated 16 (Trial a), 24 (Trial
b), and 23 (Trial c). The changes in insecticide and budget allocations are similarly varied. The
differences in resource allocation between the baseline and GA-optimized models can be attributed
to the algorithm's prioritization of districts based on disease severity, as modelled by the Negative
Binomial distribution. The GA is designed to allocate resources more efficiently, focusing on districts
with higher dengue severity, which explains why larger and more severely affected districts like Kota
Setar and Kuala Muda consistently receive more resources than smaller or less severely impacted
districts such as Sik or Yan. Additionally, the variation in population size and mutation/crossover
probabilities affects how thoroughly the GA explores different allocation scenarios, leading to
variations in the resource distribution.

In conclusion, the GA-based Negative Binomial model effectively reallocates resources based
on dengue severity, optimizing the distribution compared to the baseline allocation. Across the
models, larger population sizes lead to more efficient and targeted resource allocation, particularly
in districts with higher dengue case counts. Trial ¢, with a population size of 100, performed the best,
distributing more resources to high-severity areas like Kota Setar while minimizing waste in lower-
severity districts. This shows the importance of balancing population size, mutation, and crossover
probabilities to achieve optimal resource allocation in response to disease outbreaks.

6. Conclusion and Recommendation

This study demonstrates that integrating Genetic Algorithms (GA) with the Negative Binomial
distribution provides a robust and adaptive approach to dengue resource allocation in Kedah. By
incorporating severity-based prioritization from DMOSS classifications, the model achieved higher
severity-weighted coverage compared to conventional static allocation strategies. The results show
that Trial C, with a GA population size of 100, yielded the highest optimization performance,
balancing both geographical coverage and disease burden. These findings underscore the value of
probabilistic modeling combined with metaheuristic optimization in enhancing the effectiveness of
vector control measures, particularly in resource-constrained settings.

It is recommended that health authorities adopt the GA-based allocation model as part of
routine dengue control planning to ensure that resources are deployed more effectively to areas with
the highest disease burden. Previous studies have shown that optimization methods, such as Genetic
Algorithms, can significantly improve the efficiency of health resource allocation, particularly in
vector control operations [27]. To maximize its impact, the proposed model should be integrated
with real-time DMOSS surveillance data, enabling dynamic adjustments to manpower and insecticide
allocation as outbreak conditions evolve. Similar integration of optimization tools with real-time
disease monitoring has been demonstrated to improve responsiveness and targeting in dengue
prevention [7]. Regular reviews and tuning of GA parameters, such as population size, mutation rate,
and crossover probability, are also necessary to maintain optimal performance under changing
epidemiological and operational scenarios, in line with recommendations from computational
optimization research [28]. Furthermore, this approach has the potential to be adapted for other
vector-borne diseases, such as malaria or chikungunya, thereby extending its value as a decision-
support tool in broader public health resource management [29].
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