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Dengue fever remains one of the most pressing public health challenges in 
tropical regions, with its rapid spread placing significant strain on healthcare 
resources. Efficient resource allocation is critical to mitigating outbreaks, 
particularly in areas with varying disease severity. This study presents an 
optimization framework that integrates Genetic Algorithms (GA) with the 
Negative Binomial distribution to enhance resource allocation for dengue 
management in Kedah, Malaysia, from 2011 to 2023. The model incorporates 
constraints on manpower, insecticides, and budget, with the objective of 
maximizing fogging coverage while prioritizing high-burden areas as classified 
by the Dengue Monitoring and Surveillance System (DMOSS). Three GA 
configurations were tested, varying population size, mutation rate, and 
crossover probability, and results were compared to the baseline allocation. 
The findings reveal that GA-based optimization outperforms static allocation 
strategies by directing more resources to high-severity districts, thereby 
increasing severity-weighted effective coverage. Among the tested 
configurations, the model with a population size of 100 (Trial c) achieved the 
highest fitness value (4.7743), covering 5,572.71 km² with 3,486.54 km² 
severity-weighted coverage. The results demonstrate the potential of 
combining probabilistic severity modeling with metaheuristic optimization to 
improve the efficiency and equity of dengue control interventions, offering a 
replicable approach for other vector-borne disease management contexts. 
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1. Introduction 
 

Dengue fever, a debilitating illness caused by the dengue virus, presents a significant and growing 
threat to public health, especially in tropical and subtropical regions. The virus’s transmission hinges 
on the activity of Aedes mosquitoes, notorious for their breeding habits in stagnant water. This makes 
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densely populated urban areas particularly susceptible to outbreaks. According to the World Health 
Organization (WHO), dengue has ascended to one of the fastest-proliferating mosquito-borne 
diseases, with an estimated 390 million infections occurring globally each year [1]. This staggering 
figure underscores the substantial strain dengue places on healthcare systems worldwide, 
highlighting the urgency of optimizing resource allocation for effective dengue management. Such 
optimization is crucial in minimizing the disease's impact and bolstering the efficiency of outbreak 
response measures. 

Navigating the complexities of effective resource allocation requires a nuanced understanding of 
a myriad of factors. These include the severity of the disease, population density, the capacity and 
infrastructure of local healthcare systems, and the dynamic nature of dengue transmission. 
Traditional resource allocation strategies often fall short, relying on static methods that fail to 
capture the fluid and unpredictable nature of outbreak dynamics [2]. In contrast, contemporary 
approaches increasingly prioritize innovative solutions that leverage advanced algorithms and data-
driven insights. These cutting-edge methods hold promise for more accurately predicting and 
managing the spread of dengue, thereby enhancing the overall effectiveness of public health 
interventions. This study endeavors to address a notable gap in the current body of literature by 
systematically comparing various optimization models for resource allocation in dengue 
management. Specifically, it examines the efficacy of GA-based on statistical distribution models 
namely Negative Binomial distributions. By employing a comprehensive and multi-faceted approach, 
this research seeks to identify the most effective methods for resource distribution based on the 
severity of the disease. The ultimate goal is to contribute to the development of more efficient and 
targeted public health interventions, thereby enhancing the capacity to manage and mitigate the 
impact of dengue outbreaks. 

 
2. Literature Review 
 

Genetic Algorithms in Resource Optimization Genetic algorithms (GAs) have garnered 
widespread recognition for their efficacy in tackling intricate optimization challenges across various 
domains, such as operations research, engineering, and public health. Inspired by the principles of 
natural selection, GAs employ a population-based search strategy that enables the exploration of 
vast solution spaces with remarkable efficiency. Recent studies have underscored the potential of 
GAs in resource allocation for a range of public health crises, including disaster response and 
epidemic management [3][4]. 

In the realm of dengue management, GAs exhibits the capacity to optimize resource 
distribution by considering multiple criteria, such as disease severity, geographic distribution of 
cases, and availability of resources. The inherent flexibility of GAs facilitates the development of 
adaptive solutions that can accommodate the dynamic nature of outbreak patterns [5]. Moreover, 
the integration of GAs with machine learning techniques has shown considerable promise in 
enhancing the predictive accuracy of resource allocation models, thereby improving the overall 
effectiveness of public health interventions [6][7]. 

k-Nearest Neighbors in Epidemiology k-Nearest Neighbors (kNN) is a prominent supervised 
learning algorithm, celebrated for its straightforwardness and efficacy in both classification and 
regression tasks. Within the field of epidemiology, kNN has been utilized to forecast disease 
outcomes based on historical data, leveraging the proximity of cases within a multi-dimensional 
feature space [8][9]. Despite its strengths, kNN is not without limitations, particularly when applied 
to high-dimensional datasets where the curse of dimensionality may compromise accuracy [10]. In 
the context of dengue, were case data exhibit significant variability and spatial dependence, the 
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effectiveness of kNN may be constrained. This necessitates the exploration of more robust modeling 
approaches, such as statistical distribution models, to achieve better predictive performance and 
resource allocation [11]. 

Recent advancements in research have highlighted RWM's potential in balancing trade-offs 
between resource availability and public health needs, providing a structured framework for 
decision-making in complex scenarios [12][13]. Nevertheless, the application of RWM in the 
management of infectious diseases, particularly in dengue resource allocation, remains relatively 
unexplored and merits further investigation. 

Count data models, including the Negative Binomial and Geometric distributions, are 
instrumental in accurately capturing the underlying characteristics of disease incidence, particularly 
in scenarios marked by over-dispersion [14]. The Negative Binomial distribution is especially 
beneficial for modeling count data where the variance surpasses the mean, a common occurrence in 
dengue cases characterized by sporadic outbreaks and variable severity [4][15]. 

The Geometric distribution, which models the number of trials until the first success, is also 
applicable in understanding the interval until the first reported case in an outbreak. Incorporating 
these statistical models into resource allocation frameworks has demonstrated improved predictive 
accuracy and enhanced the allocation of healthcare resources during dengue outbreaks [16][17]. This 
underscores the necessity of integrating statistical methodologies with machine learning models to 
optimize public health responses effectively [18]. 

While numerous studies have delved into optimization methods within the realm of public 
health, there is a notable scarcity of comprehensive comparisons between different models for 
resource allocation specifically targeting dengue management. Prominent works have employed 
machine learning techniques to predict disease outbreaks and optimize resource distribution, setting 
the stage for more advanced approaches [19][20]. For instance, [21] delved into the potential of 
ensemble machine learning methods for predicting dengue incidence, underscoring the necessity of 
integrating predictive models within resource allocation frameworks. 

Expanding on this foundation, [22] explored the optimization of vector control strategies 
through a multi-objective genetic algorithm, illustrating the critical role of resource allocation 
efficiency in managing mosquito populations. Although these studies offer invaluable insights, they 
fall short of providing a comparative analysis of machine learning models alongside statistical 
distribution methods—a gap this paper aims to address [1][23]. 

The fusion of statistical models with machine learning techniques has demonstrated 
considerable promise in enhancing healthcare resource allocation across diverse scenarios ([23][24]. 
Nevertheless, there remains a pressing need for a comprehensive understanding of how these 
integrated models can be effectively applied to dengue-specific resource allocation. This research 
presents an opportunity to fill this void by systematically evaluating the performance of different 
optimization models. 

 
3. Methodology 
3.1 Data Processing 
 

The data used in this study was collected from various mukims and districts, including the 
number of dengue cases, manpower availability, insecticides, and budget for resource allocation. 
Severity was calculated using historical case data, population density, and health infrastructure in 
each area. Data preprocessing involved normalization and handling of missing values to ensure 
accuracy in model performance. 
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The kNN method computed severity based on the distance to the nearest neighbors, which 
can be influenced by the distribution of cases in adjacent areas. RWM assigned weights to areas 
based on disease severity and population density, allowing for a nuanced understanding of resource 
needs. 

Number of dengue cases registered from 2011 to 2023 for State of Kedah were collected, with 
the severity level of each district differs. The severity level is determined by DMOSS classification as 
shown in Table 1. By taking dengue cases from 2011 to 2023, only Kuala Muda (KM) is categorized as 
district with high burden of dengue cases, followed by Baling (BL), Kota Setar (KS), Kubang Pasu (KB) 
and Kulim (KL)as districts with moderate burden of dengue cases (Refer Table II). The rest of districts 
were categorized as low burden (Bandar Baharu (BB), Langkawi (LG), Padang Terap (PT), Pendang 
(PG), Sik (SK) and Yan (YN)). The data on dengue occurrences were collected Referring to DMOSS 
Orientated Dengue Preventive Activities, the locality classification is as shown in Table 2. In 2023, 
according to the number of dengue cases registered in that particular year, UKPBV, KKM concluded 
that Kuala Muda (KM), Kulim (KL) and Kota Setar (KS) were categorized as districts with high burden 
of dengue cases, then Baling, Kubang Pasu (KP) and Langkawi (LG) as moderate burden. The rest of 
districts were categorized as low burden (Bandar Baharu (BB), Padang Terap (PT), Pendang (PG), Sik 
(SK) and Yan (YN)) [25]. 

 
 Table 1 
 DMOSS Locality Stratification 

 

 

Table 2 
               DMOSS Locality Stratification by District 
 
 
 
 

*Data of cases from ME 1 2011 to ME52 2023 
*total weeks from year 2011 to 2023 = 678 weeks 
*(total accumulated cases from year ME 1 2011 to ME 52 2023/cumulative number of weeks) 

 
3.2 The Model   
 

The optimization problem included constraints on the available manpower, insecticides, and 
budget. These resources were distributed across districts and mukims based on the output of each 
model, and the GA optimized the allocation by minimizing a weighted objective function that 
balanced case severity with resource capacity. The fitness function used was formulated to minimize 
the total dengue cases while considering the constraints of available resources. This approach aimed 
to reflect real-world priorities and ensure that high-severity areas received adequate resources. 
Objective function: To maximize the coverage area (in km²) of fogging activities in each area within 
each district. 
 

Categories Description 
High burden (B1) More than equal to 7 cases per week 

Moderate burden (B2) More than equal to 1.7 cases per week 

Low burden (B3) Less than 1.7 cases per week 

District BL BB KS KM KP KL LG PT PG SK YN 

Severity 
Moderate Low Modera

te 
High Moder

ate 
Moder
ate 

Low Low Low Low Low 
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Table 3 
List of districts, 𝑖 

 
 

 

 

 

 

 

 

 

Let 𝑋!  represent the coverage in km2 of fogging activity in District 𝑖, where 𝑖 ranges from 1 to 11 
representing the districts listed. 
Objective function to maximize the coverage of fogging activities: 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒	𝑍 = ∑ 𝑥!"##

!$#          (Eq 1) 
Subject to the following constraints: 
Constraints of single-objective optimization 
Total manpower at each district, 𝑨𝒊:                                                                     (Eq 2) 

𝑨𝟏 ≤	22 
𝑨𝟐 ≤ 	𝟏𝟒 
𝑨𝟑 ≤ 	𝟐𝟒 
𝑨𝟒 ≤ 	𝟑𝟒 
𝑨𝟓 ≤	18 
𝑨𝟔 ≤ 	𝟐𝟔 
𝑨𝟕 ≤ 	𝟏𝟐 
𝑨𝟖 ≤ 	𝟏𝟖 
𝑨𝟗 ≤ 	𝟏𝟒 
𝑨𝟏𝟎 ≤ 	𝟏𝟔 
𝑨𝟏𝟏 ≤ 	𝟖 

Total manpower constraint: 
𝑨𝟏 + 𝑨𝟐 +⋯+ 𝑨𝟏𝟏 ≤ 𝟐𝟎𝟔                                                                                  (Eq 3) 
 
District-specific insecjcide constraints: 
 
𝑺𝒊𝒌 	≤ 𝑺𝒕𝒐𝒄𝒌	𝒐𝒇	𝒊𝒏𝒔𝒆𝒄𝒕𝒊𝒄𝒊𝒅𝒆	𝒕𝒚𝒑𝒆	𝒌	𝒊𝒏	𝑫𝒊𝒔𝒕𝒓𝒊𝒄𝒕	𝒊                                    (Eq 4) 
 

𝒌 = 
Gokilahts 

𝒌 = 𝟐 
Malathion TG 

𝒌 = 𝟑 
Actellic 50EC 

𝑺𝟏𝟏 ≤	278.56 𝑆#1 ≤	106.76 𝑆#2 ≤16.64 
𝑺𝟐𝟏 ≤	67.52 𝑆11 ≤	14.40 𝑆12 ≤	10.00 
𝑺𝟑𝟏 ≤	835.00 𝑆21 ≤	220.00 𝑆22 ≤	60.00 
𝑺𝟒𝟏 ≤	939.00 𝑆31 ≤	191.00 𝑆32 ≤	36.00 
𝑺𝟓𝟏 ≤	415.00 𝑆41 ≤90.00 𝑆42 ≤22.00 

District i 
Baling 1 

Bandar Baharu 2 

Kota Setar 3 

Kuala Muda 4 

Kubang Pasu 5 

Kulim 6 

Langkawi 7 

Padang Terap 8 

Pendang 9 

Sik 10 

Yan 11 



Journal of Advanced Research in Business and Management Studies 
Volume 38, Issue 1 (2025) 102-114 

107 
 

𝑺𝟔𝟏 ≤	574.75 𝑆51 ≤	225.40 𝑆52 ≤	7.50 
𝑺𝟕𝟏 ≤	289.30 𝑆61 ≤	24.00 𝑆62 ≤	3.84 
𝑺𝟖𝟏 ≤	51.34 𝑆71 ≤	0.00 𝑆72 ≤	0.00 
𝑺𝟗𝟏 ≤	128.96 𝑆81 ≤	55.84 𝑆82 ≤	10.00 
𝑺𝟏𝟎𝟏 ≤	80.21 𝑆#91 ≤	0.00 𝑆#92 ≤	0.00 
𝑺𝟏𝟏𝟏 ≤	57.36 𝑆##1 ≤	7.20 𝑆##2 ≤	0.00 

 
Where: 

H 𝑺𝒊𝟏	
𝟏𝟏

𝒊$𝟏
≤ 𝟑𝟕𝟏𝟕. 𝟎𝟎	𝐥𝐢𝐭𝐫𝐞𝐬 

H 𝑺𝒊𝟐	
𝟏𝟏

𝒊$𝟏
≤ 𝟗𝟑𝟒. 𝟔𝟎	𝐥𝐢𝐭𝐫𝐞𝐬 

H 𝑺𝒊𝟑	
𝟏𝟏

𝒊$𝟏
≤ 𝟏𝟔𝟓. 𝟗𝟖	𝐥𝐢𝐭𝐫𝐞𝐬 

 
Total stock of insecIcides constraint: 
 
𝑺𝟏 + 𝑺𝟐 +⋯+ 𝑺𝟏𝟏 ≤ 𝟒𝟖𝟏𝟕. 𝟓𝟖	𝒍𝒊𝒕𝒓𝒆𝒔                                                             (Eq 5) 
 
Budget constraints, 𝑪𝒊:                                                                                          (Eq 6) 

𝑪𝟏 ≤ 𝟏𝟎𝟒, 𝟗𝟑𝟏. 𝟒𝟒 
𝑪𝟐 ≤ 	𝟓𝟐, 𝟒𝟔𝟓. 𝟕𝟐 
𝑪𝟑 ≤ 	𝟏𝟓𝟕, 𝟑𝟗𝟕. 𝟏𝟕 
𝑪𝟒 ≤ 	𝟏𝟓𝟕, 𝟑𝟗𝟕. 𝟏𝟕 
𝑪𝟓 ≤ 	𝟓𝟐, 𝟒𝟔𝟓. 𝟕𝟐 
𝑪𝟔 ≤ 	𝟏𝟓𝟕, 𝟑𝟗𝟕. 𝟏𝟕 
𝑪𝟕 ≤ 	𝟓𝟐, 𝟒𝟔𝟓. 𝟕𝟐 
𝑪𝟖 ≤ 	𝟓𝟐, 𝟒𝟔𝟓. 𝟕𝟐 
𝑪𝟗 ≤ 	𝟓𝟐, 𝟒𝟔𝟓. 𝟕𝟐 
𝑪𝟏𝟎 ≤ 	𝟓𝟐, 𝟒𝟔𝟓. 𝟕𝟐 
𝑪𝟏𝟏 ≤ 	𝟓𝟐, 𝟒𝟔𝟓. 𝟕𝟐 

 
3.3 The GA Setting 
 

The Genetic Algorithm (GA) was configured as specified in Table 4. These parameter choices 
are based on prior research indicating their effectiveness in convergence speed and optimization 
quality. The population size was selected to ensure diversity in the solution space while maintaining 
computational efficiency. The number of runs was increased to capture variability in results and 
ensure robust conclusions. Maximum iterations were set to allow adequate exploration of the 
solution space. The mutation rate was varied to prevent premature convergence and to encourage 
exploration, while the crossover rate was adjusted to enhance the mixing of genetic information 
among solutions. Assume that the number of dengue cases in each mukims follows the negative 
binomial distribution, the Parameters setting for Negative binomial distribution. 

The Negative Binomial distribution is particularly effective for count data where variance 
exceeds the mean, making it a suitable choice for dengue case data characterized by outbreaks of 
varying intensity [26]. The choice of severity calculation method impacts resource allocation 
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strategies, as different models may emphasize different aspects of the data, leading to varying 
recommendations for resource distribution. 
 
Table 4 
GA Setting 

Parameter 
tested 

Arguments in R Descrip:on # 

Type of GA type The type of geneEc algorithm to be run 
depending on the nature of decision 

variables. 

"binary" 
for binary 

representaEons of 
decision variables. 

Fitness Func:on fitness The fitness funcEon, any allowable R 
funcEon which takes as input an 

individual string represenEng a potenEal 
soluEon and returns a numerical value 

describing its ``fitness''. 

R5 

Number of bits nBits A value specifying the number of bits to 
be used in binary encoded opEmizaEons. 

Number of rows in the 
dataset; nrow(dataset) 

Number of 
popula:on 

popSize An R funcEon for randomly generaEng an 
iniEal populaEon. 

(10,50,100) 

Maximum 
itera:on 

maxiter The maximum number of iteraEons to 
run before the GA search is halted. 

4000 

Number of runs run The number of consecuEve generaEons 
without any improvement in the best 

fitness value before the GA is stopped. 

4000 

Probability of 
muta:on 

 

pmutaEon The probability of mutaEon in a parent 
chromosome. Usually, mutaEon occurs 

with a small probability, and by default is 
set to 0.1. 

0.1, 0.2, 0.3, 0.4, 0.5 

Probability of 
crossover 

pcrossover The probability of crossover between 
pairs of chromosomes. Typically, this is a 
large value and by default is set to 0.8. 

0.1, 0.2, 0.3, 0.4, 0.5 

 

The fitness function used in the GA-based Negative Binomial model is designed to assess the 
efficiency of resource allocation across mukims based on the severity of dengue outbreaks. The 
process begins by ranking the mukims according to the number of dengue cases, where higher case 
numbers receive a higher priority (lower rank number). These ranks are inverted and normalized into 
weights, where mukims with more severe outbreaks (higher case counts) are given larger weights, 
ensuring that resources are proportionally allocated based on severity. The Negative Binomial 
distribution is applied to model the severity of dengue in each mukim. This distribution is well-suited 
for count data with over-dispersion, a common characteristic of dengue outbreaks where variance 
exceeds the mean. The size_param in the distribution represents the number of successes required, 
and the prob_param is the probability of success on each trial. The function uses these parameters 
to generate random values representing the severity of outbreaks in each mukim. 

In terms of resource allocation, the fitness function calculates the total coverage, manpower, 
insecticide (three types), and budget allocated to each district. Resources are distributed based on 
the severity-weighted coverage, ensuring that high-severity mukims receive more attention. The 
function also imposes constraints on the total manpower (206), insecticide (different limits for each 
type), and budget (RM 944,383). If any allocation exceeds these limits, the fitness function returns -
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Inf, penalizing invalid solutions. Ultimately, the fitness value returned is the severity-weighted total 
coverage, with higher values representing more efficient and effective resource allocations. 
 
5. Results and Discussion 
 

The original resource allocation (refer Table 5) across the 11 districts serves as the baseline 
for comparison. This allocation, which distributes manpower, insecticide, and budget without 
optimization, offers a reference point for understanding the effectiveness of the genetic algorithm 
(GA) outputs. For instance, Kota Setar was allocated 35 personnel, 835 litres of Insecticide 1, 220 
Liters of Insecticide 2, and 60 litres of Insecticide 3, with a total budget of RM 157,397.17. Meanwhile, 
Baling was allocated 8 personnel and RM 104,931.44. These allocations are not influenced by any 
algorithmic optimization based on dengue case severity or variability. 
 
Table 5 
Original Resources Allocation 

District # Mukims Manpower Insecticide 1 Insecticide 2 Insecticide 3 Budget 
Baling 8 22 278.56 106.76 16.64 104,931.44 

Bandar Baharu 8 14 67.52 14.40 10.00 52,465.72 
Kota Setar 35 24 835.00 220.00 60.00 157,397.17 

Kuala Muda 16 34 939.00 191.00 36.00 157,397.17 
Kubang Pasu 21 18 415.00 90.00 22.00 52,465.72 

Kulim 16 26 574.75 225.40 7.50 157,397.17 
Langkawi 6 12 289.30 24.00 3.84 52,465.72 

Padang Terap 11 18 51.34 0.00 0.00 52,465.72 
Pendang 8 14 128.96 55.84 10.00 52,465.72 

Sik 4 16 80.21 0.00 0.00 52,465.72 
Yan 5 8 57.36 7.20 0.00 52,465.72 

Total 138 206 3,717.00 934.60 165.98 944,383.00 
 

Count data models, such as the Negative Binomial and Geometric distributions, are essential 
for accurately capturing the nature of disease incidence, particularly in situations where over-
dispersion occurs [14]. In this study, a Genetic Algorithm (GA) approach was applied to optimize 
resource allocation across districts and mukims, incorporating the Negative Binomial distribution to 
account for dengue severity. This approach prioritizes high-risk areas using probabilistic severity 
scores, enhancing the efficiency of resource distribution. A total of 75 trials were conducted, varying 
population sizes (10, 50, 100), mutation rates, and crossover probabilities (ranging from 0.1 to 0.5), 
with each trial run for 4000 iterations. The best-performing model for each population size, based on 
the highest fitness value, was selected, resulting in the top 3 models (a, b and c).  
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Table 6 
Allocation using Negative Binomial (three specifications 1, b and c) 

 NegaMve Binomial – using Fitness FuncMon R5_nb 
Trial a b c 

PopulaMon Size 10 50 100 
Max IteraMons 4000 4000 4000 

Number of runs 4000 4000 4000 
Probability of mutaMon 0.1 0.4 0.3 
Probability of crossover 0.5 0.5 0.4 
Total Mukims Allocated 67 out of 138 mukims 77 out of 138 mukims 80 out of 138 mukims 

Total Area Covered (km2) 4,611.34 km2 4,391.54 km2 5,572.71 km2 
Total EffecMve Coverage Area (km2) 3,198.28 km2 2,976.08 km2 3,932.10 km2 
Total Severity-Weighted EffecMve 

Coverage Area (km²) 2,624.08 km2 2,637.50 km2 3,486.54 km2 

Total Manpower 104 people 108 people 114 people 
Total InsecMcide 1 (litres) 1,893.99 litres 2,041.32 litres 2,138.32 litres 
Total InsecMcide 2 (litres) 481.06 litres 526.54 litres 541.75 litres 
Total InsecMcide 3 (litres) 84.69 litres 93.56 litres 99.43 litres 

Total Budget (RM) RM 474,388.90 RM 518,283.50 RM 527,496.30 
Time-elapsed (seconds) 69.11 seconds 259.49 seconds 452.54 seconds 

Final Fitness FuncMon Value 3.9428 4.3501 4.7743 
 

Table 6 presents the resource allocation for each district for Trial a when using a population 
size of 10, mutation probability of 0.1, and crossover probability of 0.5 in the GA optimization. In this 
model, districts such as Kota Setar received significant resources, including 16 manpower, 381.71 
litres of Insecticide 1, and a budget of RM 71,952.99. In contrast, districts like Sik received minimal 
resources, with just 1 personnel and RM 13,116.43 in budget. In addition, there is no resources 
allocated to Yan district. This model reflects a moderate allocation effort based on the severity of 
dengue outbreaks across the districts. 
 
Table 6 
Resources Allocation by using Fitness Function Trial a (popsize=10, pmutation=0.1, pcrossover=0.5) 

District Allocated Manpower Insecticide 1 Insecticide 2 Insecticide 3 Budget 
Baling 5 14 174.10 66.73 10.40 65,582.15 

Bandar Baharu 7 12 59.08 12.60 8.75 45,907.51 
Kota Setar 16 11 381.71 100.57 27.43 71,952.99 

Kuala Muda 9 19 528.19 107.44 20.25 88,535.91 
Kubang Pasu 7 6 138.33 30.00 7.33 17,488.57 

Kulim 9 15 323.30 126.79 4.22 88,535.91 
Langkawi 4 8 192.87 16.00 2.56 34,977.15 

Padang Terap 6 10 28.00 0.00 0.00 28,617.67 
Pendang 3 5 48.36 20.94 3.75 19,674.65 

Sik 1 4 20.05 0.00 0.00 13,116.43 
Yan 0 0 0 0 0 0 

Total 67 104 1,893.99 481.06 84.69 474,388.92 
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Next, Table 7 shows the results from using Trial b of a population size 50, a mutation 
probability of 0.4, and a crossover probability of 0.5. Here, the overall resource allocation is more 
evenly distributed, with notable increases in manpower for districts like Kota Setar (24 personnel) 
and a larger budget (RM 107,929.49). Sik, on the other hand, receive smaller allocations. The increase 
in population size and mutation rate appears to provide more exploration of potential resource 
distributions. 

 
Table 7 
 Resources Allocation by using Fitness Function Trial b (popsize=50, pmutation=0.4, pcrossover=0.5) 

 

Finally, in Trial c, this model uses a larger population size of 100, with mutation and crossover 
probabilities of 0.3 and 0.4, respectively (refer Table 8). The results show a substantial allocation of 
resources to high-severity areas. For example, Kota Setar is allocated 23 personnel, 548.71 litres of 
Insecticide 1, and a budget of RM 103,432.43. Smaller districts such as Sik and Yan receive fewer 
resources. This model demonstrates a more focused allocation, with larger districts receiving the 
majority of resources, which may reflect their higher disease severity. 

 
Table 8 
Resources Allocation by using Fitness Function Trial c (popsize=100, pmutation=0.3, pcrossover=0.4) 

District Allocated Manpower Insecticide 1 Insecticide 2 Insecticide 3 Budget 
Baling 3 8 104.46 40.04 6.24 39,349.29 

Bandar Baharu 5 9 42.20 9.00 6.25 32,791.08 
Kota Setar 23 16 548.71 144.57 39.43 103,432.43 

Kuala Muda 9 19 528.19 107.44 20.25 88,535.91 
Kubang Pasu 13 11 256.90 55.71 13.62 32,478.78 

Kulim 9 15 323.30 126.79 4.22 88,535.91 
Langkawi 3 6 144.65 12.00 1.92 26,232.86 

Padang Terap 4 7 18.67 0.00 0.00 19,078.44 
Pendang 6 11 96.72 41.88 7.50 39,349.29 

Sik 2 8 40.11 0.00 0.00 26,232.86 
Yan 3 5 34.42 4.32 0.00 31,479.43 

Total 80 114 2,138.32 541.75 99.43 527,496.27 
 

District Allocated Manpower Insecticide 1 Insecticide 2 Insecticide 3 Budget 
Baling 3 8 104.46 40.04 6.24 39,349.29 

Bandar Baharu 5 9 42.20 9.00 6.25 32,791.08 
Kota Setar 24 16 572.57 150.86 41.14 107,929.49 

Kuala Muda 7 15 410.81 83.56 15.75 68,861.26 
Kubang Pasu 9 8 177.86 38.57 9.43 22,485.31 

Kulim 10 16 359.22 140.88 4.69 98,373.23 
Langkawi 4 8 192.87 16.00 2.56 34,977.15 

Padang Terap 4 7 18.67 0.00 0.00 19,078.44 
Pendang 6 11 96.72 41.88 7.50 39,349.29 

Sik 1 4 20.05 0.00 0.00 13,116.43 
Yan 4 6 45.89 5.76 0.00 41,972.58 

Total 77 108 2,041.32 526.54 93.56 518,283.54 
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When comparing the baseline resource allocation with the GA-optimized models above, the 
differences are evident in both manpower and resource distribution. For example, Kota Setar 
originally received 24 personnel, but under the GA optimization, it was allocated 16 (Trial a), 24 (Trial 
b), and 23 (Trial c). The changes in insecticide and budget allocations are similarly varied. The 
differences in resource allocation between the baseline and GA-optimized models can be attributed 
to the algorithm's prioritization of districts based on disease severity, as modelled by the Negative 
Binomial distribution. The GA is designed to allocate resources more efficiently, focusing on districts 
with higher dengue severity, which explains why larger and more severely affected districts like Kota 
Setar and Kuala Muda consistently receive more resources than smaller or less severely impacted 
districts such as Sik or Yan. Additionally, the variation in population size and mutation/crossover 
probabilities affects how thoroughly the GA explores different allocation scenarios, leading to 
variations in the resource distribution. 

In conclusion, the GA-based Negative Binomial model effectively reallocates resources based 
on dengue severity, optimizing the distribution compared to the baseline allocation. Across the 
models, larger population sizes lead to more efficient and targeted resource allocation, particularly 
in districts with higher dengue case counts. Trial c, with a population size of 100, performed the best, 
distributing more resources to high-severity areas like Kota Setar while minimizing waste in lower-
severity districts. This shows the importance of balancing population size, mutation, and crossover 
probabilities to achieve optimal resource allocation in response to disease outbreaks. 
 
6. Conclusion and Recommendation 
 

This study demonstrates that integrating Genetic Algorithms (GA) with the Negative Binomial 
distribution provides a robust and adaptive approach to dengue resource allocation in Kedah. By 
incorporating severity-based prioritization from DMOSS classifications, the model achieved higher 
severity-weighted coverage compared to conventional static allocation strategies. The results show 
that Trial C, with a GA population size of 100, yielded the highest optimization performance, 
balancing both geographical coverage and disease burden. These findings underscore the value of 
probabilistic modeling combined with metaheuristic optimization in enhancing the effectiveness of 
vector control measures, particularly in resource-constrained settings. 

It is recommended that health authorities adopt the GA-based allocation model as part of 
routine dengue control planning to ensure that resources are deployed more effectively to areas with 
the highest disease burden. Previous studies have shown that optimization methods, such as Genetic 
Algorithms, can significantly improve the efficiency of health resource allocation, particularly in 
vector control operations [27]. To maximize its impact, the proposed model should be integrated 
with real-time DMOSS surveillance data, enabling dynamic adjustments to manpower and insecticide 
allocation as outbreak conditions evolve. Similar integration of optimization tools with real-time 
disease monitoring has been demonstrated to improve responsiveness and targeting in dengue 
prevention [7]. Regular reviews and tuning of GA parameters, such as population size, mutation rate, 
and crossover probability, are also necessary to maintain optimal performance under changing 
epidemiological and operational scenarios, in line with recommendations from computational 
optimization research [28]. Furthermore, this approach has the potential to be adapted for other 
vector-borne diseases, such as malaria or chikungunya, thereby extending its value as a decision-
support tool in broader public health resource management [29]. 
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