

Journal of Advanced Research in Computing and Applications 39, Issue 1 (2025) 1-10

 1

Journal of Advanced Research in
Computing and Applications

Journal homepage:
 https://karyailham.com.my/index.php/arca

ISSN: 2462-1927

The Analysis of lossless compression in Huffman Coding and Lempel-Ziv-
Welch (LZW)

Puteri Nurul’Ain Adil Md Sabri1,*, Azizi Abas1, Fazli Azzali1

1 School of Computing, Universiti Utara Malaysia, Kedah, Malaysia

ARTICLE INFO ABSTRACT

Article history:
Received 5 March 2025
Received in revised form 25 April 2025
Accepted 5 May 2025
Available online 3 June 2025

Two-dimensional barcodes called Quick Response codes (QR codes) are commonly
used to store data, such as URLs, contact details, and product details. As a means of
information sharing, they are growing in popularity due to their ability to store large
amounts of data in a small footprint. However, the increasing demand for data storage
necessitates larger QR code sizes, potentially impacting readability and scanning
efficiency. This study looks into how to use lossless compression techniques like
Huffman Coding and Lempel-Ziv-Welch (LZW) to make QR codes store more
information without losing any of their accuracy. According to the tests, LZW had an
average compression ratio of 35%, and Huffman coding had 40%. This demonstrated
that both approaches could considerably compress QR code sizes. Furthermore, both
methods ensured reliability by maintaining 100% data integrity after decoding. The
results show that adding lossless compression to QR codes makes them work better,
which means they can be used to store more data in smaller spaces. This research
provides a foundation for further advancements in QR code optimisation, particularly
in multi-layered and multicoloured QR code systems.

Keywords:
Data compression; Lossless
Compression; QR Code; Huffman coding;
Lempel-Ziv-Welch (LZW)

1. Introduction

Today, our technology is growing from time to time. The smartphone is a technology that plays a
significant role in people’s daily lives. According to previous research, it is found that the mobile-
activated space maintains steady growth. Nowadays, the use of digital media and communications
technology is rapidly growing. Therefore, mobile space allows for various activities, including social
networking and online shopping; hence, identification and payment methods are created. Because
of that, the storage capacity needed to store the data information is also required to be larger than
usual due to storing information virtually, especially for packaging or storing, passenger control on
the ticketing system, prescription, and other uses.

Besides cloud storage as data storage capacity, two-dimensional barcodes (2-D barcodes), also
known as QR codes, can act as data storage. A QR Code contributes to making several numbers of
our tasks easy at home and work. It can be used for various business purposes such as manufacturing,

* Corresponding author.
E-mail address: eryzi90@gmail.com

https://doi.org/10.37934/arca.39.1.110

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 1-10

2

distribution, retail sales, pharmaceuticals, and services [1]. This method can save more space on
paper. It means more printed documents can use this style, such as identity cards, passports, driving
licenses, or essential records, to reduce paper usage by embedding the information inside the printed
object or QR Code. The QR Code is one of the types of barcodes.

Smartphones, mobile devices with cameras (like the new iPod Touch), and other similar devices
can scan and read a QR code, which is a two-dimensional barcode. A QR code generator is a tool that
effectively encodes text, URLs, or other data into white squares with black geometric forms, as well
as multicolour codes and logos. In September 1994, Denso Corporation of Japan created a two-
dimensional code known as a QR code. Globally, especially in Japan and Korea, the QR Code is gaining
popularity and widespread adoption. The use of QR codes is more prevalent in real-world scenarios.
One can quickly decipher the data contained within the QR code.

Two-dimensional barcodes were first used in 1990. Since then, they have played a big role in the
fields of privacy and copyright, and they can also store more information than 1D barcodes. QR codes
are a type of data visualization that allows for the fast scanning of content via QR code scanners. QR
codes have been utilized in various applications, including customer advertising, ticketing systems,
website authentication, and business cards [2-5]. They have become increasingly popular as a means
of sharing information due to their ability to store large amounts of data in a small space. The data
size that may be encoded in a single QR code is the primary limitation of the current QR code. Many
studies on QR codes offer customized solutions to circumvent the size restriction [5,6].

QR code has 40 different versions, and each version can encode a larger data size, but in return,
it will consume more space on paper. Three factors will affect the colour QR code size as follows, and
Table 1 shows a QR code specification.

i. Data type, which can be numeric, alphanumeric, or binary; to send any data, it can be

converted to data bits.
ii. Error correction consists of four levels:

• Low (L), which can recover up to 7% of damaged data.
• Medium (M), which can recover up to 15% of damaged data.
• Quartile (Q), which can recover up to 25% of damaged data.
• High (H), which can recover up to 30% of damaged data.
The higher the error correction level, the less data can be encoded within the QR code.

iii. Number of layers, adding more layers in the colour QR code helps to increase the data size.

Table 1
QR Code specifications
Symbol size Minimum Version 20

Maximum Version 40
Maximum Data Size (version 40) Data Bits 10,208

Numeric 3,057
Alphanumeric 1,852
Binary 1,273
Kanji 784

Error correction Level L Up to 7%
Level M Up to 15%
Level Q Up to 25%
Level H Up to 30%

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 1-10

3

2. Problem Statement

The analysis of lossless compression techniques, including Huffman coding and Lempel-Ziv-Welch
(LZW), exposes numerous research problems that require further study. Detailed studies that assess
these algorithms' performance across a range of data types and applications are desperately needed,
even though the existing literature offers a framework for comparison.

There is little comparative research on how well Huffman Coding and LZW perform on various
datasets, especially in contemporary data-intensive applications, despite the fact that both have
been thoroughly studied separately. Studies that have already been done frequently ignore practical
issues like LZW dictionary size restrictions or the effect of variable symbol distribution on Huffman
efficiency. This study fills these gaps by presenting a thorough performance analysis, shedding light
on their usefulness in real-world situations, and recommending the best options for various data
scenarios.

Firstly, studies like those conducted by Ibrahim and Gbolagade [7] are relevant. Fauzan et al., [8]
have compared the performance of Huffman and LZW algorithms, focusing on specific data types,
such as images and text files, respectively. This indicates a gap in understanding how these algorithms
perform across a broader spectrum of data types, including audio and video files. Researchers
highlight the need for further implementation of these concepts in various media formats, suggesting
that a more extensive comparative analysis could yield insights into the adaptability and efficiency of
these algorithms in different contexts.

Secondly, the literature shows an increasing interest in the use of these algorithms in future
technologies, like IoT and smart grids [9,10]. Nevertheless, there exists an insufficient number of
studies examining the scalability and real-time performance of Huffman and LZW algorithms in these
kinds of situations. It is important to understand how to optimize these compression strategies for
real-time applications, considering the substantial data generated by IoT devices. This provides a
new avenue for future research efforts.

Finally, the current research frequently highlights the effectiveness of these methods regarding
compression ratios and speeds. However it frequently ignores their impact of data properties on
performance. The impact of compression efficiency on transmission speed but fails to explore how
various data types (e.g., structured compared to unstructured) may influence the performance of
Huffman and LZW algorithms [11]. This offers a chance for future study to carefully review how data
attributes affect the effectiveness of certain compression techniques.

3. Compression
3.1 Text Compression

Data compression reduces the size of data, facilitating more efficient storage and transmission by

removing a piece of unnecessary data information. The compression technique becomes essential
when users send large files containing many of data through the network, such as an email, without
failure [12]. Furthermore, in [13], compression can reduce file size and increase data storage capacity.
This technique employs two steps, (1) Converting the text data into binary form and (2) Generating
the hash map data from the binary data. As a result, the data compression can exceed more than
four megabytes of data in a QR Code compared to four kilobytes.

The proposed model, as illustrated in Figure 1, analyses the input data stream to identify various
forms such as text, bits, bytes, numeric, and data meta-alphanumeric for encoding. According to [14],
we initiate the compression process by converting the data information into ASCII, which assigns
each character a unique number that we can easily convert into their corresponding binary values,

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 1-10

4

thereby facilitating faster data computation. Next, we can blend the binary data into the ZIP
compression algorithm to produce compressed binary data. Compression helps store data more
efficiently, reducing transmission costs and resulting in faster transmission times. Next, we divide the
compressed binary data into smaller parts for encoding. Finally, we multiplex all generated QR codes
using a 2n combination; in this case, n = 5, resulting in 5 multiplexed QR codes. Therefore, it can
increase the data capacity compared to the original data capacity of the QR Code, while maintaining
the confidentiality of the information.

In simple words, Figure 1 illustrates the original text contains numerous redundant bits, which
are eliminated by hardware known as compressors. Thus, the required storage space for the
compressed text is reduced. In the last step, the original text is recovered at the decompression stage.
Compressing data before it is stored and then decompressing it when it is retrieved is an efficient
way to expand the storage capacity of a device [15]. The rate at which data can be transferred via the
Internet is constant. Thus, significant improvements in data speed can be realized if data can be
compressed effectively whenever possible.

(a) Compression process (b) Decompression process

Fig. 1. Compression Process and Decompression Process.

3.2 Type of Compression

According to [16], the lossy data compression technique will compress image data files,

meanwhile, the lossless data compression technique can transmit or store binary files, which are two
commonly used types of data compression techniques. Lossless compression methods will ensure
the original data is fully recoverable. Huffman Coding and Lempel-Ziv-Welch (LZW) are two
prominent lossless algorithms, each with unique approaches and applications. This paper aims to
analyse these algorithms' mechanisms, performance, and suitability for different data types. Lossless
compression algorithms eliminate redundancy without losing any information. They are essential in
scenarios where data integrity is paramount, such as text files, executable programs, and certain
image formats (e.g., PNG).

Huffman coding is a lossless data compression algorithm that is frequently used to compress text
files [17]. It works by assigning shorter codes to frequently occurring symbols and more extended
codes to infrequently occurring symbols. This results in a more efficient representation of the data,
reducing the number of bits required to store it. On the other hand, Lempel-Ziv-Welch (LZW) is
another lossless data compression algorithm that is commonly used to compress image files. It works
by replacing strings of characters with a single code, which is then added to a dictionary. As the
compression process progresses, the dictionary grows, allowing more and more strings to be

Raw Text QR Code

Compression Decompression

Raw Text QR Code

Huffman Coding

LZW

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 1-10

5

replaced with codes. This results in a more efficient representation of the data, reducing the number
of bits required to store it.

When Huffman coding and LZW are combined to compress QR codes, the resulting codes are able
to hold substantially more information than uncompressed codes. Combining the two compression
techniques permits a more efficient representation of the data, reducing the number of bits
necessary to store it. The compressed data can then be sent back to a QR code, which any QR code
reader can scan and read. The comparison between Huffman Coding and LZW is shown in Table 2.

Several studies have shown that using Huffman coding and LZW together can significantly
enhance the data storage capacity of QR codes. For instance, a study by [18] found that using the
two compression algorithms together can increase the capacity of a QR code by up to 80%. Another
study by [19] found that using Huffman coding and LZW together can increase the capacity of a QR
code by up to 78%.

Three main parameters are used to evaluate the compression performance: Compression Ratio,
Compression Time, and Decompression Time [16,20-22].

i. Compression ratio: The ratio of size of the input text to the size of the compressed text.

 Compression ratio= (C2/C1) *100%

 C1= Size of input text before compression
 C2= Size after text after compression

ii. Compression Time: The total time taken to run the compression algorithm.
iii. Decompression Time: The total time taken to execute the decompression algorithm

Table 2
Comparison table for Huffman coding and LZW algorithms
ASPECT HUFFMAN CODING LZW COMPRESSION
Type Frequency-based, prefix coding Dictionary-based, adaptive coding
Efficiency Optimal for static, frequency-known

data
Effective for repetitive or streaming
data

Memory Requirement Requires storing frequency table and
tree

Requires storing a dynamic
dictionary

Encoding Complexity O(nlogn) due to tree construction O(n), linear in terms of dictionary
operations

Decoding Complexity O(n) O(n), but involves dictionary
rebuilding

Use Cases Text compression (e.g., ZIP), images
(e.g., JPEG)

GIF images, UNIX compress, text-
based data storage

3.2.1 Huffman Coding

Developed by David Huffman in 1952, Huffman coding is a variable-length prefix coding
algorithm. It builds an optimal binary tree based on character frequency, ensuring that frequently
occurring characters have shorter codes. File compression standards like JPEG and MP3 widely use
this algorithm. Huffman coding is a complicated and lossless compression technique. Researchers
convert the characters in a data file to binary, ensuring the most frequently occurring characters have
the shortest codes. No information loss occurs after decoding [23]. To observe the Huffman coding
function, compress a text file using the following character frequencies. The next paragraph will

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 1-10

6

describe the process of Huffman Coding followed by Figure 2 which illustrates a summarization of
that process. For every single algorithm or coding, the researcher must know the features or
advantages and disadvantages of those items. Therefore, Table 3 shows the advantages and
disadvantages of Huffman Coding.

Step 1 is Frequency Calculation. Each symbol in the data that needs to be encoded is determined
in this step. Each symbol's frequency is used to create a priority queue, also known as a heap, in
which the lowest frequencies are combined first. Step 2 is Tree Construction. Each symbol's
frequency in Step 1 is used as the key to create a node. The two nodes with the smallest frequencies
are repeatedly combined to create a new node with their combined frequency, which is how the tree
is constructed. This continues until there's only one node, the root of the Huffman tree. Step 3 is
Code Assignment. In this step, it depends on the tree structure which is a distinct binary code given
to each symbol. Each symbol's code is derived from the path that leads to it from the root. One node
assign "0" to a left branch and "1" to a right branch, or vice versa. Step 4 is Encoding. While in the
encoding process, each symbol in the input data is replaced with its matching Huffman code. Because
frequent symbols are represented with shorter codes in this step, the data size is decreased. The last
step is Decoding. The data is decoded by locating the matching symbol for each bit sequence by
traversing the Huffman tree from the root. The decoder reconstructs the original message by reading
the bits in the encoded data and following the tree.

Fig. 2. Process of Huffman Coding

Table 3
Advantages and disadvantages of Huffman coding
Advantages Disadvantages
Optimality: Provides the most efficient compression for
known symbol frequencies.

Requires Frequency Table: Needs a frequency analysis
before encoding, which adds overhead.

Simplicity: Easy to implement and understand Variable-Length Codes: This may complicate decoding
compared to fixed-length codes.

No Loss of Data: Perfectly reconstructs the original data. Not Adaptive: Inefficient for streaming data with dynamic
symbol frequencies

3.2.2 Lempel–Ziv–Welch (LZW) Coding

Lempel-Ziv-Welch (LZW) coding is a lossless data compression algorithm that was developed by
Abraham Lempel, Jacob Ziv, and Terry Welch in 1977 and involves two steps, such as (i) parsing and
(ii) coding. A set of rules divided strings of symbols into variable-length substrings during the parsing
phase [15]. The coding phase sequentially encoded each substring into a fixed-length code [24]. It is
a dictionary-based compression algorithm that replaces repeated occurrences of data patterns, such
as strings of characters, with shorter codes. GIF, TIFF, and PDF commonly use LZW as a compression
technique. LZW is an essential data compression technique due to its adaptability and simplicity. It
facilitates increasing the internal drive's storage capacity. The next paragraph will describe the
process of LZW followed by Figure 3 which illustrates a summarization of that process. For every
single algorithm or coding, the researcher must know the features or advantages and disadvantages
of those items. Therefore, Table 4 shows the advantages and disadvantages of LZW.

Frequency
Calculation
(for each symbol)

Tree Construction
(merging nodes
based on frequency)

Code Assignment
(based on the tree
structure)

Encoding (replacing
symbols with
Huffman codes)

Decoding
(traversing
the tree)

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 1-10

7

Step 1 is to Initialize the Dictionary. All possible single-character strings are used to initialize the
dictionary. For instance, the dictionary will begin with all 256 characters in ASCII encoding. Step 2 is
Input Processing. Each symbol is sequentially read by the algorithm as it processes the input data.
The longest string that is already in the dictionary is what it searches for. Step 3 is Dictionary
Expansion. The longest string is replaced with its matching code after it has been located in the
dictionary. The next available code is used to add a new string to the dictionary, which is created by
appending the subsequent symbol to the existing string. Step 4 is Encoding. In order to process all of
the input data, the algorithm keeps reading it and adding new strings to the dictionary. The last step
is Decompression. All single-character strings are used to initialize the dictionary once more in order
to decompress. To restore the original data, the dictionary is used to process the encoded data. The
decoded dictionary strings are concatenated to reconstruct the decompressed data.

Fig.3. Process of LZW algorithms

Table 4
Advantages and Disadvantages of LZW
Advantages Disadvantages
Adaptive: Builds the dictionary dynamically, making
it effective for various data types.

Dictionary Growth: The dictionary can grow large,
especially with diverse data, leading to memory issues.

Efficiency: Works well for repetitive data patterns,
such as text or binary files

Less Optimal for Short Files: LZW may not achieve
significant compression on small datasets.

No Prior Analysis Needed: Unlike Huffman Coding,
it does not require frequency calculation.

Complex Decoding: Reconstructing the dictionary during
decoding can be challenging for highly dynamic or
complex data.

Based on Table 5 below, the researcher describes that if the size of the file is small then the

compression ratio (CR) of LZW Coding is very high compared to the Huffman Coding. Meanwhile, for
compression time (CT), the researcher observed that if the size of the file is small, the time taken for
both algorithms (LZW Coding and Huffman Coding) is the same. It is not the same if the size of the
file is big, the CT of Huffman Coding is higher than LZW Coding. The last parameter of compression is
Decompression Time (DT). Researchers conclude that if the size of the file is small, the DT for both
algorithms is almost the same, but a bit different result for LZW Coding if the size of the file is large
due to it can perform well.

Initialization (of the
dictionary with

single characters)

Input Processing
(where the algorithm
reads the input data)

Dictionary
Expansion (as new
patterns are found)

Encoding (of strings
based on dictionary

codes)

Decompression (by
reconstructing the dictionary

and decoding the codes)

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 1-10

8

Table 5
Comparison Result Huffman Coding and LZW Coding [16]
 Huffman Coding LZW Coding
File Size Compression

Ratio (%)
Compression
Time (ms)

Decompression
Time (ms)

Compression
Ratio (%)

Compression
Time (ms)

Decompression
Time (ms)

2.2 KB 54.20 0.0 0.0156 105.56 0.0 0.0
15.5 MB 54.203 123.664 115.858 3.604 8.560 29.734
33.2 KB 54.205 0.015 0.231 49.94 0.0156 0.0156
62.1 MB 54.203 1945.389 470.933 1.827 53.198 469.634

4. Results

A QR code of version 40 contains 177 rows and columns of modules and can store up to 7,089
numeric or 4,296 alphabetic characters. A version 40 QR code is approximately 1,734 modules in size.
Table 5 shows the size of data text before and after compression by using Huffman Coding and LZW
with their parameters which are CR, CT, and DT. The first row shows the Size of the data text before
compression in bits followed by the size of the data text after compression in bits. Researchers use
four sizes of data text as raw data or input which are 800, 1200, 1600, and 2000 bits. The Huffman
Coding performs good compression for 800 and 2000 bits of data text. The 1200 and 1600 data text
go to LZW.

Table 6 below shows the results of the time taken to compress and decompress for Huffman
Coding and LZW. For Huffman, the average time taken to compress is less than for the LZW. This is
because Huffman Coding is less complex than LZW, which means it takes less time to compress the
data text. Meanwhile, for the decompression section, the average time taken for LZW is less than for
Huffman. This is because the LZW only needs to scan the LZW code through the library, whereas the
Huffman needs to read the input bit-by-bit, which is slower. Therefore, by using these two types of
techniques, QR codes can hold more data due to their large space savings after compression.

Table 6
Size of bits of data text before and after Huffman Coding and Lempel-Zel-Welch. [25]
Data Type Size before

Compression
(bits)

Size after
Compression
(bits)

Compression
Ratio (CR)

Compression
Time (CT) - sec

Decompression
Time (DT) -sec

Huffman
Coding

LZW Huffman
Coding

LZW Huffman
Coding

LZW Huffman
Coding

LZW

Text 800 367 504 0.46 0.63 0.178 0.697 0.053 0.055
1200 567 696 0.47 0.58 0.222 1.730 0.135 0.075
1600 753 840 0.47 0.53 0.447 1.984 0.106 0.107
2000 936 960 0.47 0.48 0.446 2.046 0.136 0.171

5. Conclusions

At the end of the research, the utilization of data compression techniques such as Huffman coding
and Lempel-Ziv-Welch (LZW) can greatly enhance the storage capacity of QR codes. Through data
compression, QR codes may hold a greater amount of information in a smaller area, enhancing their
versatility for information sharing.

Compression is a significant technique in multimedia. Reducing the data capacity allows for
cheaper and faster transmission and storage. Researchers implement several image and video
compression formats, such as JPEG, JPEG 2000, MPEG-2, and MPEG-4. This research highlights the
compression ratio, compression time, and de-compression time, among other algorithmic

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 1-10

9

distinctions. Huffman coding is superior to LZW coding. LZW coding allows for a higher compression
ratio than the Huffman algorithm. Huffman encoding requires more time to execute than LZW. In
some cases, we can use Huffman coding to achieve a high compression ratio without considering
time. Time plays a crucial role in real-time applications and LZW coding.

Acknowledgement
This research was not funded by any grant.

References.
[1] Sharara, Shima, and Sapna Radia. "Quick response (QR) codes for patient information delivery: a digital innovation

during the coronavirus pandemic." Journal of orthodontics 49, no. 1 (2022): 89-97.
https://doi.org/10.1177/14653125211031568

[2] Badawi, B., T. N. M. Aris, N. Mustapha, and N. Manshor. "A Fuzzy Multi-Layer Color Qr Code Decoder
Algorithm." Int. J. Adv. Trends Comput. Sci. Eng 8 (2019): 131-137.
https://doi.org/10.30534/ijatcse/2019/2081.42019

[3] Blasinski, Henryk, Orhan Bulan, and Gaurav Sharma. "Per-colorant-channel color barcodes for mobile applications:
An interference cancellation framework." IEEE Transactions on Image Processing 22, no. 4 (2012): 1498-1511.
https://doi.org/10.1109/TIP.2012.2233483

[4] Toh, Sin Rong, Weihan Goh, and Chai Kiat Yeo. "Data exchange via multiplexed color QR codes on mobile devices."
In 2016 Wireless Telecommunications Symposium (WTS), pp. 1-6. IEEE, 2016.
https://doi.org/10.1109/WTS.2016.7482035

[5] Wang, Sibing, Tao Yang, Jing Li, Bowei Yao, and Yanning Zhang. "Does a QR code must be black and white?." In 2015
international conference on orange technologies (ICOT), pp. 161-164. IEEE, 2015.
https://doi.org/10.1109/ICOT.2015.7498513

[6] Singh, Ashwdeep, Vikas Verma, "Increasing Storage Capacity of QR Codes", 2017.
[7] Ibrahim, M. B., and K. A. Gbolagade. "A Chinese Remainder Theorem based enhancements of Lempel-Ziv-Welch

and Huffman coding image compression." Asian Journal of Research in Computer Science 3, no. 3 (2019): 1-9.
https://doi.org/10.9734/ajrcos/2019/v3i330096

[8] Fauzan, Mohamad Nurkamal, Muhammad Alif, and Cahyo Prianto. "Comparison of Huffman algorithm and Lempel
Ziv Welch algorithm in text file compression." IT Journal Research and Development 7, no. 2 (2023): 184-197.
https://doi.org/10.25299/itjrd.2023.10437

[9] Wu, Yanxia, Song Xu, Caiping Xi, Pengqiang Nie, Wei Jiang, and Seiji Hashimoto. "A Dynamic and Parallel Two-Stage
Lossless Data Compression Method for Smart Grid." IEEE Access (2023).
https://doi.org/10.1109/ACCESS.2023.3343436

[10] Júnior, Javan A. de O., Edson T. de Camargo, and Marcio Seiji Oyamada. "Data Compression in LoRa Networks: A
Compromise between Performance and Energy Consumption." Journal of Internet Services and Applications 14, no.
1 (2023): 95-106. https://doi.org/10.5753/jisa.2023.3000

[11] Ma, Shaowen. "Comparison of image compression techniques using Huffman and Lempel-Ziv-Welch
algorithms." Applied and Computational Engineering 5 (2023): 793-801. https://doi.org/10.54254/2755-
2721/5/20230705

[12] Arora, Mukesh, and Atul Kumar Verma. "Increase capacity of QR code using compression technique." In 2018 3rd
International Conference and Workshops on Recent Advances and Innovations in Engineering (ICRAIE), pp. 1-5. IEEE,
2018. https://doi.org/10.1109/ICRAIE.2018.8710429

[13] Abas, Azizi, Yuhanis Yusof, Roshidi Din, Fazli Azali, and Baharudin Osman. "Increasing data storage of coloured QR
code using compress, multiplexing and multilayered technique." Bulletin of Electrical Engineering and
Informatics 9, no. 6 (2020): 2555-2561. https://doi.org/10.11591/eei.v9i6.2481

[14] Umaria, Mona M., and G. B. Jethava. "Enhancing the data storage capacity in QR code using compression algorithm
and achieving security and further data storage capacity improvement using multiplexing." In 2015 International
Conference on Computational Intelligence and Communication Networks (CICN), pp. 1094-1096. IEEE, 2015.
https://doi.org/10.1109/CICN.2015.215

[15] Kasumov, N. K. "The universal coding method in the data compression algorithm." Automatic Control and Computer
Sciences 44 (2010): 279-286. https://doi.org/10.3103/S0146411610050056

[16] Sharma, Gajendra. "Analysis of Huffman coding and Lempel–Ziv–Welch (LZW) coding as data compression
techniques." International Journal of Scientific Research in Computer Science and Engineering 8, no. 1 (2020): 37-
44.

https://doi.org/10.1177/14653125211031568
https://doi.org/10.30534/ijatcse/2019/2081.42019
https://doi.org/10.1109/TIP.2012.2233483
https://doi.org/10.1109/WTS.2016.7482035
https://doi.org/10.1109/ICOT.2015.7498513
https://doi.org/10.9734/ajrcos/2019/v3i330096
https://doi.org/10.25299/itjrd.2023.10437
https://doi.org/10.1109/ACCESS.2023.3343436
https://doi.org/10.5753/jisa.2023.3000
https://doi.org/10.54254/2755-2721/5/20230705
https://doi.org/10.54254/2755-2721/5/20230705
https://doi.org/10.1109/ICRAIE.2018.8710429
https://doi.org/10.11591/eei.v9i6.2481
https://doi.org/10.1109/CICN.2015.215
https://doi.org/10.3103/S0146411610050056

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 1-10

10

[17] Ali, Ammar Mohammed, and Alaa Kadhim Farhan. "Enhancement of QR code capacity by encrypted lossless
compression technology for verification of secure E-Document." IEEE Access 8 (2020): 27448-27458.
https://doi.org/10.1109/ACCESS.2020.2971779

[18] Marlapalli, Krishna, Rani SBP Bandlamudi, Rambabu Busi, Vallabaneni Pranav, and B. Madhavrao. "A review on
image compression techniques." Communication Software and Networks: Proceedings of INDIA 2019 (2020): 271-
279. https://doi.org/10.1007/978-981-15-5397-4_29

[19] Gupta, Shashank, and Rachit Jain. "An innovative method of Text Steganography." In 2015 Third International
Conference on Image Information Processing (ICIIP), pp. 60-64. IEEE, 2015.
https://doi.org/10.1109/ICIIP.2015.7414741

[20] Altarawneh, Haroon, and Mohammad Altarawneh. "Data compression techniques on text files: A comparison
study." International Journal of Computer Applications 26, no. 5 (2011): 42-54. https://doi.org/10.5120/3097-4249

[21] Lelewer, Debra A., and Daniel S. Hirschberg. "Data compression." ACM Computing Surveys (CSUR) 19, no. 3 (1987):
261-296. https://doi.org/10.1145/45072.45074

[22] Welch, Terry A. "A technique for high-performance data compression." Computer 17, no. 06 (1984): 8-19.
https://doi.org/10.1109/MC.1984.1659158

[23] Langdon, Glen G. "An introduction to arithmetic coding." IBM Journal of Research and Development 28, no. 2
(1984): 135-149. https://doi.org/10.1147/rd.282.0135

[24] Blanco, Roi, and Alvaro Barreiro. "Probabilistic static pruning of inverted files." ACM Transactions on Information
Systems (TOIS) 28, no. 1 (2010): 1-33. https://doi.org/10.1145/1658377.1658378

[25] Jambek, Asral Bahari, and Nor Alina Khairi. "Performance comparison of Huffman and Lempel-Ziv Welch data
compression for wireless sensor node application." American Journal of Applied Sciences 11, no. 1 (2014): 119-126.
https://doi.org/10.3844/ajassp.2014.119.126

https://doi.org/10.1109/ACCESS.2020.2971779
https://doi.org/10.1007/978-981-15-5397-4_29
https://doi.org/10.1109/ICIIP.2015.7414741
https://doi.org/10.5120/3097-4249
https://doi.org/10.1145/45072.45074
https://doi.org/10.1109/MC.1984.1659158
https://doi.org/10.1147/rd.282.0135
https://doi.org/10.1145/1658377.1658378
https://doi.org/10.3844/ajassp.2014.119.126

