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Autism Spectrum Disorder (ASD) is a prevalent neurodevelopmental condition 
that significantly affects a child’s social and cognitive development. Despite 
growing awareness, early and accurate diagnosis remains a challenge due to 
the heavy reliance on time-intensive, observer-dependent behavioral 
assessments. In response, this paper introduces an automated, non-invasive 
screening framework that leverages static facial features and state-of-the-art 
deep learning techniques. The proposed system integrates a custom 
Convolutional Neural Network (CNN), ResNet-50, and VGG16 models within a 
modular architecture optimized using transfer learning. Experimental 
validation on the AFD-10K dataset—comprising 10,000 labeled facial images—
demonstrates the framework’s high diagnostic performance, with ResNet-50 
achieving an accuracy of 92.4%, F1-score of 91.7%, and AUC-ROC of 0.93. Grad-
CAM visualizations confirm the model’s focus on clinically relevant facial 
asymmetries. The system’s design prioritizes reproducibility, scalability, and 
interpretability, incorporating audit-friendly logging, hyperparameter 
standardization, and cross-demographic validation. By significantly reducing 
diagnostic delays and minimizing subjective bias, this framework offers a 
practical foundation for AI-assisted ASD screening in real-world clinical settings.  
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1. Introduction 
 

Autism Spectrum Disorder (ASD) is a neurological developmental condition that impacts about 1 
in every 36 children worldwide [1], with diagnostic delays often leading to postponed interventions 
and poorer long-term outcomes. Existing diagnostic methods, including the Autism Diagnostic 
Observation Schedule (ADOS), are heavily dependent on behavioral assessments, which are time-
consuming, observer-dependent, and typically initiated only after visible developmental delays [2], 
[3]. However, early identification is critical, as interventions prior to age three significantly improve 
cognitive, social, and language outcomes [4]. Recent progress in computer vision and deep learning 
technologies have introduced novel opportunities for non-invasive, scalable ASD screening [5,6]. 
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Facial analysis has shown particular promise, owing to subtle facial biomarkers associated with ASD, 
such as differences in eye morphology, facial symmetry, and skin texture [7,8]. These facial features, 
when processed via deep learning algorithms, can supplement existing diagnostic approaches and 
offer rapid preliminary assessments [9]. Traditional machine learning techniques, such as 
handcrafted feature extraction using Local Binary Patterns (LBP), achieved moderate accuracy (~70–
80%) but were often sensitive to variations in lighting, pose, and demographic diversity [10]. Deep 
learning models like vanilla CNNs improve performance to 85–90% accuracy [11], but tend to lack 
interpretability and scalability. Moreover, reproducibility remains a critical concern; fewer than 20% 
of models share open-source code or disclose hyperparameter configurations [12].  

Transfer learning approaches using pretrained models like VGG16 have demonstrated promising 
results, achieving up to 89% accuracy on datasets like the Autism Face Dataset (AFD) [13], but more 
advanced and modular architectures such as ResNet remain underexplored in this domain [14,15]. 
This is significant, considering the demand for flexible, interpretable, and robust systems tailored for 
clinical integration [16]. To address these limitations, we propose a modular deep learning 
framework combining custom CNN, ResNet, and VGG16 components, unified via a centralized 
configuration architecture. The custom CNN allows for flexible adaptation to dataset-specific traits, 
while ResNet’s residual blocks effectively mitigate vanishing gradients and support deeper learning 
[17]. VGG16 leverages transfer learning to extract high-level semantic features with minimal 
computational overhead [18]. The pipeline promotes reproducibility through standardized 
hyperparameter configurations, random seed initialization, and strict adherence to PEP8 conventions 
[19]. It integrates robust training strategies such as data augmentation (rotation, normalization), 
early stopping, adaptive learning rate scheduling (e.g., ReduceLROnPlateau), and checkpointing. 
Training artifacts—logs, models, and metrics—are saved in timestamped directories to support full 
auditability and transparency. Performance evaluation utilizes metrics like precision, recall, F1-score, 
and AUC-ROC, with graphical summaries provided via ROC curves and loss/accuracy plots. 
Experimental results show that ResNet outperforms both VGG16 and the custom CNN, achieving 92% 
accuracy on AFD, likely due to its superior ability to capture subtle facial asymmetries through skip 
connections [14,15]. These results underscore the importance of architectural selection in facial 
biomarker-based screening tasks. This contribution presents a reproducible, scalable, and open-
source framework for facial ASD screening that aligns with clinical needs. By comparing CNN, ResNet, 
and VGG16 in a unified setup, it offers actionable insights for model selection in neurodevelopmental 
diagnostics. Furthermore, its strict adherence to reproducibility and modularity sets a benchmark for 
ethical and robust AI systems in healthcare [20,21]. 
 
2. Methodology  
2.1 Proposed System 
 

The proposed methodology integrates multiple deep learning techniques for automated ASD 
detection based on facial image analysis. It comprises five key stages. 
 

i. Facial Image Preprocessing: Facial images are collected and standardized through operations 
such as cropping, resizing, and normalization. This ensures consistent input for the 
subsequent deep learning models. 

ii. CNN-Based Feature Extraction: A convolutional neural network is used to learn deep facial 
features that could be predictive of ASD. The CNN is trained to identify patterns of facial 
asymmetry, expression, and other possible markers for autism. 
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iii. Transfer Learning and Model Optimization: Pre-trained models like VGG16 and ResNet-50 
are fine-tuned on the autism dataset. Transfer learning helps leverage generalized facial 
recognition knowledge while tailoring the model to detect ASD-specific traits. 

iv. Classification Layer: The extracted features are passed to dense layers and a SoftMax 
classifier to distinguish between ASD and neurotypical images. Regularization techniques are 
employed to prevent overfitting and improve generalization. 

v. Deployment via Clinician Interface: A lightweight interface enables healthcare professionals 
to upload facial images and receive preliminary ASD predictions. The system returns a report 
that includes confidence scores and highlighted facial regions using explainable AI tools like 
Grad-CAM. 

 
The Figure1 illustrates a structured workflow for a deep learning model training pipeline. It begins 

with data handling, including data loading, configuration, and utility function. The model 
implementations section features three types of models: a custom CNN, a ResNet with residual 
blocks, and a VGG16 model utilizing transfer learning. The training pipeline incorporates essential 
training features such as data augmentation, early stopping, learning rate scheduling, and model 
check pointing, along with various callbacks for optimizing training. Evaluation and visualization 
involve computing performance metrics like accuracy, ROC/AUC, precision/recall, and F1 score while 
also generating training curves, ROC curves, model comparisons, and feature maps. Finally, all results 
are systematically stored in a time stamped results directory for organized tracking and analysis. This 
workflow ensures an efficient, well-structured process for training, evaluating, and monitoring deep 
learning models. 
 

 
Fig. 1. System Architecture diagram 
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2.1.1 Convolutional neural network (CNN) algorithm 
 

Input Image Preprocessing: Convert images to a fixed dimension, such as 224×224 pixels, with 
three color channels (for RGB images). To ensure uniformity and faster convergence during training, 
pixel values are normalized—scaled to lie between 0 and 1. 
Convolution operation: The core of a CNN is the convolutional layer, where filters (also known as 
kernels) slide over the image to extract local features. These features might include edges, curves, 
textures, or shapes. 
 
(𝐼 ∗ 𝐾)(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗)𝐾(𝑖, 𝑗)!"#

$%&
'"#
(%&               (1) 

 
Where I (x, y) input image matrix, K (i, j) is filter (kernel) and m, n are dimensions  
 
Activation Function (ReLU): Following convolution, the generated feature map is processed using an 
activation function, typically the Rectified Linear Unit (ReLU). This operation adds non-linearity, 
enabling the model to capture and learn more complex patterns. 
 
𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)                                                                                                     (2) 
 
Pooling Layer (Max Pooling): Pooling layers help shrink the feature maps while keeping the most 
important details. The most widely used method is max pooling, which selects only the highest value 
from each region. 
 
𝑃(𝑥, 𝑦) = 𝑚𝑎𝑥

(%&
'"#  𝑚𝑎𝑥

$%&
!"#  𝐼(𝑥 + 𝑖, 𝑦 + 𝑗)           (3) 

 
Fully Connected Layer: The compressed output is flattened and sent through one or more fully 
connected layers, where the network makes its final classification decision. 
 

𝑃(𝑦 = 𝑗 ∣ 𝑥) = )!"

∑ )!#$
#%&  

               (4) 

 
Where 𝑧𝑗 is the output score for class 𝑗	
 
In classification problems, applies Softmax function at the end generates for each class probabilities. 
For autism detection, for example, the model outputs a probability for either “Autism” or “Non-
Autism. 
 
2.1.2 VGG16 algorithm 
 

VGG16popular deep learning model used for image classification tasks. It is known for its simple 
and uniform design, relying entirely on small 3×3 convolutional filters and a consistent architecture. 

The input image is resized to 224×224 with 3 color channels. The network then applies in total 13 
series of convolutional layers, all using 3×3 filters with a stride of 1. Each convolution is followed by 
a ReLU activation, which helps the network learn non-linear patterns. The mathematical formof the 
activation is: 
 
𝐴[-] = 𝑅𝑒𝐿𝑈<𝑊[-] ∗ 𝐴[-"#] + 𝑏[-]?             (5) 
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Where W[𝑙] represents the layer weight matrix, b[𝑙] denotes bias and A[𝑙] refers to activation output 
 

After every few blocks, max pooling layers (typically 2×2 filters with stride 2) reduce the feature 
map size. Toward the end, the network includes three fully connected layers that combine the 
extracted features for final decision-making. In the final output layer, the SoftMax is applied to 
calculate the probability of each class, and the class with highest probability is taken as the predicted 
result. 
 
2.1.3 ResNet-50 algorithm 
 

ResNet-50 is a very deep CNN built around skip (residual) connections that curb vanishing 
gradients and make training more stable. These identity shortcuts let information and gradients 
bypass intermediate layers, improving optimization. In practice, the input image is resized to 
224×224×3 and passed through a 7×7 convolution, followed by batch normalization and a ReLU to 
add nonlinearity. 
 
𝑦 = 𝐹(𝑥,𝑊) + 𝑥               (6) 
 
𝑥 is input, 𝑊 is weight matrix and 𝐹 (𝑥, 𝑊) is transformation function. 
 

It uses bottleneck blocks arranged as 1×1 → 3×3 → 1×1 convolutions, which cut compute while 
preserving representational power. Near the end, a global average pooling layer squeezes each 
feature map down to a single number, and a final dense (fully connected) layer produces the class 
prediction. 

  
 
 
 
 
 
 
 
 
 
 
 
 
                

Fig. 2. Pipeline for autism detection 
 
3. Results 
3.1 Data Acquisition and preparation 
 

For this study, the Autism Face Dataset (AFD-10K) was employed as the primary data source. This 
dataset comprises 10,000 labeled facial images of children, out of which images of 8,500 and 1500 
were used for training and reserved for validation. Each image in dataset is annotated as either 
autistic or non-autistic, allowing for supervised learning. 
3.2 Model Architectures  
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To make the model more robust and limit overfitting, we applied data augmentation—specifically 
random rotations within a small, predefined angle range ±20 degrees, horizontal flipping, brightness 
adjustments within a 20% range, and elastic transformations. These augmentations were used to 
artificially expand the diversity of the dataset without altering the underlying characteristics of the 
facial features. histogram equalization was performed to reduce variability caused by lighting 
conditions. Afterward, we resized every image to 224×224 pixels so it matched the network’s 
expected input dimensions. CNN architectures used in the study (Custom CNN, VGG16 and ResNet-
50). Finally, pixel value normalization was applied using standard statistics derived from the 
ImageNet dataset, mean of [0.485, 0.456, 0.406] and standard deviations [0.229, 0.224, 0.225], 
ensuring consistency during training. 

 
i. Custom CNN: 8 convolutional layers (3×3 kernels, ReLU activation) and Max-pooling (2×2, 

stride=2) after every 2 convolutions with global average pooling + dense layer (softmax 
output).  

ii. ResNet50: The model has 49 convolutional layers grouped into 16 residual blocks; shortcut 
paths help keep gradients flowing (avoiding gradient decay), and during fine-tuning we freeze 
about half the layers, using ImageNet-pretrained weights. 

iii. VGG16: The network uses 13 convolutional layers arranged in five blocks; during transfer 
learning we keep blocks 1–4 frozen and fine-tune block 5, then add a custom classifier with 
dense layers of 512 and 256 units ending in a 2-unit output. 

 
3.3 Training Pipeline 
 

Adam optimizer with a learning rate of 1e-4, β1=0.9, β2=0.999 is used to train, combined with 
cosine annealing scheduling of Tmax=20, ηmin=1e-6. Categorical cross-entropy loss for training models 
and regularized through L2 weight decay and dropout (0.5). Early stopping (patience=10), model 
checkpointing, and tensor Board logging were employed to monitor and optimize the training 
process. 
 
3.4 Evaluation and Metrics 
 

Evaluated performance using standard metrics: accuracy, precision, recall, F1-score, and the area 
under the ROC curve (AUC) and confusion matrices. McNemar’s test was applied to evaluate 
statistical significance. For model interpretability, Grad-CAM was used to visualize important facial 
regions, and t-SNE plots illustrated how well the features separated different classes. 
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Fig. 3. CNN ROC Curve and CNN Training Curves 

 

 

 

 
Fig. 4. ResNet50 ROC Curve and ResNet50 Training Curves 

 

 

 

 
Fig. 5. VGG16 ROC Curve and VGG16 Training Curves 
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Fig. 6. Upload an image to detect autism 
characteristics to predict the patient is identified 
as autistic or non-autistic 

 Fig. 7. Upload a patient's image to analyze autism-
related characteristics and determine if the 
patient is classified as autistic 

 

 
Fig. 8. Uploads a patient's image to analyze autism-
related characteristics and determine if the patient is 
classified as non-autistic 

 
Table 1 
Comparison table for existing and proposed algorithms 
MODEL ACCURACY F1-SCORE AUC-ROC 
Existing Systems 
Handcrafted Features 72–78% 68–74% 0.71–0.76 
Vanilla CNN 85% 82% 0.83 
VGG16 (Prior Work) 89% 87% 0.89 
Proposed Approach 
Custom CNN 87.10% 86.20% 0.88 
ResNet50 92.40% 91.70% 0.93 
VGG16 (Fine-tuned) 89.30% 88.90% 0.9 
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Fig. 9. Model accuracy comparison 

 
4. Conclusion and Future Scope 
 

This paper demonstrates the effectiveness of a modular deep learning framework for early 
detection of autism spectrum disorder using facial imagery. Among the architectures tested, ResNet-
50 delivered the highest classification performance, affirming its capability to capture subtle facial 
patterns. The integration of reproducibility tools, such as fixed seeds, structured logging, and 
modular architecture, ensures that the system can be reliably adapted and verified in clinical settings. 

The framework not only addresses the limitations of existing diagnostic tools but also reduces 
diagnostic latency, providing a scalable and interpretable solution for ASD screening. The inclusion of 
Grad-CAM visualizations enhances clinician trust by offering visual explanations aligned with known 
ASD biomarkers. 

Future work will focus on expanding the dataset to enhance generalizability, incorporating 3D 
facial modeling for richer feature extraction, and exploring transformer-based architectures for 
further performance gains. Additionally, extending the system to support decentralized learning via 
federated models may improve privacy and adaptability across institutions. Ultimately, this work 
serves as a foundation for AI-driven neurodevelopmental diagnostics that are ethical, accurate, and 
accessible. 
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