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Autism Spectrum Disorder (ASD) is a prevalent neurodevelopmental condition
that significantly affects a child’s social and cognitive development. Despite
growing awareness, early and accurate diagnosis remains a challenge due to
the heavy reliance on time-intensive, observer-dependent behavioral
assessments. In response, this paper introduces an automated, non-invasive
screening framework that leverages static facial features and state-of-the-art
deep learning techniques. The proposed system integrates a custom
Convolutional Neural Network (CNN), ResNet-50, and VGG16 models within a
modular architecture optimized using transfer learning. Experimental
validation on the AFD-10K dataset—comprising 10,000 labeled facial images—
demonstrates the framework’s high diagnostic performance, with ResNet-50
achieving an accuracy of 92.4%, F1-score of 91.7%, and AUC-ROC of 0.93. Grad-
CAM visualizations confirm the model’s focus on clinically relevant facial
asymmetries. The system’s design prioritizes reproducibility, scalability, and
interpretability, incorporating audit-friendly logging, hyperparameter
standardization, and cross-demographic validation. By significantly reducing
diagnostic delays and minimizing subjective bias, this framework offers a
practical foundation for Al-assisted ASD screening in real-world clinical settings.

1. Introduction

Autism Spectrum Disorder (ASD) is a neurological developmental condition that impacts about 1
in every 36 children worldwide [1], with diagnostic delays often leading to postponed interventions
and poorer long-term outcomes. Existing diagnostic methods, including the Autism Diagnostic
Observation Schedule (ADOS), are heavily dependent on behavioral assessments, which are time-
consuming, observer-dependent, and typically initiated only after visible developmental delays [2],
[3]. However, early identification is critical, as interventions prior to age three significantly improve
cognitive, social, and language outcomes [4]. Recent progress in computer vision and deep learning
technologies have introduced novel opportunities for non-invasive, scalable ASD screening [5,6].
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Facial analysis has shown particular promise, owing to subtle facial biomarkers associated with ASD,
such as differences in eye morphology, facial symmetry, and skin texture [7,8]. These facial features,
when processed via deep learning algorithms, can supplement existing diagnostic approaches and
offer rapid preliminary assessments [9]. Traditional machine learning techniques, such as
handcrafted feature extraction using Local Binary Patterns (LBP), achieved moderate accuracy (~70-
80%) but were often sensitive to variations in lighting, pose, and demographic diversity [10]. Deep
learning models like vanilla CNNs improve performance to 85-90% accuracy [11], but tend to lack
interpretability and scalability. Moreover, reproducibility remains a critical concern; fewer than 20%
of models share open-source code or disclose hyperparameter configurations [12].

Transfer learning approaches using pretrained models like VGG16 have demonstrated promising
results, achieving up to 89% accuracy on datasets like the Autism Face Dataset (AFD) [13], but more
advanced and modular architectures such as ResNet remain underexplored in this domain [14,15].
This is significant, considering the demand for flexible, interpretable, and robust systems tailored for
clinical integration [16]. To address these limitations, we propose a modular deep learning
framework combining custom CNN, ResNet, and VGG16 components, unified via a centralized
configuration architecture. The custom CNN allows for flexible adaptation to dataset-specific traits,
while ResNet’s residual blocks effectively mitigate vanishing gradients and support deeper learning
[17]. VGG16 leverages transfer learning to extract high-level semantic features with minimal
computational overhead [18]. The pipeline promotes reproducibility through standardized
hyperparameter configurations, random seed initialization, and strict adherence to PEP8 conventions
[19]. It integrates robust training strategies such as data augmentation (rotation, normalization),
early stopping, adaptive learning rate scheduling (e.g., ReduceLROnPlateau), and checkpointing.
Training artifacts—logs, models, and metrics—are saved in timestamped directories to support full
auditability and transparency. Performance evaluation utilizes metrics like precision, recall, F1-score,
and AUC-ROC, with graphical summaries provided via ROC curves and loss/accuracy plots.
Experimental results show that ResNet outperforms both VGG16 and the custom CNN, achieving 92%
accuracy on AFD, likely due to its superior ability to capture subtle facial asymmetries through skip
connections [14,15]. These results underscore the importance of architectural selection in facial
biomarker-based screening tasks. This contribution presents a reproducible, scalable, and open-
source framework for facial ASD screening that aligns with clinical needs. By comparing CNN, ResNet,
and VGG16 in a unified setup, it offers actionable insights for model selection in neurodevelopmental
diagnostics. Furthermore, its strict adherence to reproducibility and modularity sets a benchmark for
ethical and robust Al systems in healthcare [20,21].

2. Methodology
2.1 Proposed System

The proposed methodology integrates multiple deep learning techniques for automated ASD
detection based on facial image analysis. It comprises five key stages.

i.  Facial Image Preprocessing: Facial images are collected and standardized through operations
such as cropping, resizing, and normalization. This ensures consistent input for the
subsequent deep learning models.

ii. CNN-Based Feature Extraction: A convolutional neural network is used to learn deep facial
features that could be predictive of ASD. The CNN is trained to identify patterns of facial
asymmetry, expression, and other possible markers for autism.
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iii.  Transfer Learning and Model Optimization: Pre-trained models like VGG16 and ResNet-50
are fine-tuned on the autism dataset. Transfer learning helps leverage generalized facial
recognition knowledge while tailoring the model to detect ASD-specific traits.

iv.  Classification Layer: The extracted features are passed to dense layers and a SoftMax
classifier to distinguish between ASD and neurotypical images. Regularization techniques are
employed to prevent overfitting and improve generalization.

v. Deployment via Clinician Interface: A lightweight interface enables healthcare professionals
to upload facial images and receive preliminary ASD predictions. The system returns a report
that includes confidence scores and highlighted facial regions using explainable Al tools like
Grad-CAM.

The Figurel illustrates a structured workflow for a deep learning model training pipeline. It begins
with data handling, including data loading, configuration, and utility function. The model
implementations section features three types of models: a custom CNN, a ResNet with residual
blocks, and a VGG16 model utilizing transfer learning. The training pipeline incorporates essential
training features such as data augmentation, early stopping, learning rate scheduling, and model
check pointing, along with various callbacks for optimizing training. Evaluation and visualization
involve computing performance metrics like accuracy, ROC/AUC, precision/recall, and F1 score while
also generating training curves, ROC curves, model comparisons, and feature maps. Finally, all results
are systematically stored in a time stamped results directory for organized tracking and analysis. This
workflow ensures an efficient, well-structured process for training, evaluating, and monitoring deep
learning models.

Data Configuration Utilities
data_loader.py config.py utils.py

I |

p
Model Implementations
CNN Model ResNet Model VGG16 Model
models/cnn_model.py models/resnet_model.py models/vgg16_model.py
Configurable Layers Residual Blocks Transfer Learning
Custom Implementation Custom Implementation Fine-tuning
Training Pipeline Evaluation & Visualization
train_all_models.py evaluation.py
Training Features Callbacks Metrics Visualizations
« Data Augmentation + History Logger « Accuracy * Training Curves
+ Early Stopping * ModelCheckpoint *« ROC/AUC * ROC Curves
* LR Scheduling « EarlyStopping * Precision/Recall * Model Comparison
* Model Checkpointing * ReduceLROnPlateau * F1 Score + Feature Maps

|
Timestamped Results Directory

Fig. 1. System Architecture diagram
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2.1.1 Convolutional neural network (CNN) algorithm

Input Image Preprocessing: Convert images to a fixed dimension, such as 224x224 pixels, with
three color channels (for RGB images). To ensure uniformity and faster convergence during training,
pixel values are normalized—scaled to lie between 0 and 1.

Convolution operation: The core of a CNN is the convolutional layer, where filters (also known as
kernels) slide over the image to extract local features. These features might include edges, curves,
textures, or shapes.

I *K)(xy) =X 2o I(x + i,y + DK, )) (1)
Where | (x, y) input image matrix, K (i, j) is filter (kernel) and m, n are dimensions

Activation Function (ReLU): Following convolution, the generated feature map is processed using an
activation function, typically the Rectified Linear Unit (ReLU). This operation adds non-linearity,
enabling the model to capture and learn more complex patterns.

f(x) = max(0,x) (2)

Pooling Layer (Max Pooling): Pooling layers help shrink the feature maps while keeping the most
important details. The most widely used method is max pooling, which selects only the highest value
from each region.

P(x,y) = mc%xm‘lmax"‘ll(x +i,y+)) (3)
l=

Fully Connected Layer: The compressed output is flattened and sent through one or more fully

connected layers, where the network makes its final classification decision.

e’

PO=)1%) =5 @

Where zj is the output score for class j

In classification problems, applies Softmax function at the end generates for each class probabilities.
For autism detection, for example, the model outputs a probability for either “Autism” or “Non-
Autism.

2.1.2 VGG16 algorithm

VGG16popular deep learning model used for image classification tasks. It is known for its simple
and uniform design, relying entirely on small 3x3 convolutional filters and a consistent architecture.

The input image is resized to 224x224 with 3 color channels. The network then applies in total 13
series of convolutional layers, all using 3x3 filters with a stride of 1. Each convolution is followed by
a ReLU activation, which helps the network learn non-linear patterns. The mathematical formof the
activation is:

AW = ReLU(WMH « AlL-11 4+ pIU) (5)
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Where W[I] represents the layer weight matrix, b[[] denotes bias and A[l] refers to activation output

After every few blocks, max pooling layers (typically 2x2 filters with stride 2) reduce the feature
map size. Toward the end, the network includes three fully connected layers that combine the
extracted features for final decision-making. In the final output layer, the SoftMax is applied to
calculate the probability of each class, and the class with highest probability is taken as the predicted
result.

2.1.3 ResNet-50 algorithm

ResNet-50 is a very deep CNN built around skip (residual) connections that curb vanishing
gradients and make training more stable. These identity shortcuts let information and gradients
bypass intermediate layers, improving optimization. In practice, the input image is resized to
224x224x3 and passed through a 7x7 convolution, followed by batch normalization and a ReLU to
add nonlinearity.

y=FW)+x (6)
x is input, W is weight matrix and F (x, W) is transformation function.

It uses bottleneck blocks arranged as 1x1 - 3x3 - 1x1 convolutions, which cut compute while
preserving representational power. Near the end, a global average pooling layer squeezes each
feature map down to a single number, and a final dense (fully connected) layer produces the class
prediction.

Data Collection Preprocessing Feature
> Face = Extraction [rm—
Facial images of detection, Using VGG16 or

Classification Output
Fully connected ™ Autism detection
layers and results.

—

Fig. 2. Pipeline for autism detection

3. Results
3.1 Data Acquisition and preparation

For this study, the Autism Face Dataset (AFD-10K) was employed as the primary data source. This
dataset comprises 10,000 labeled facial images of children, out of which images of 8,500 and 1500
were used for training and reserved for validation. Each image in dataset is annotated as either
autistic or non-autistic, allowing for supervised learning.

3.2 Model Architectures
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To make the model more robust and limit overfitting, we applied data augmentation—specifically
random rotations within a small, predefined angle range +20 degrees, horizontal flipping, brightness
adjustments within a 20% range, and elastic transformations. These augmentations were used to
artificially expand the diversity of the dataset without altering the underlying characteristics of the
facial features. histogram equalization was performed to reduce variability caused by lighting
conditions. Afterward, we resized every image to 224x224 pixels so it matched the network’s
expected input dimensions. CNN architectures used in the study (Custom CNN, VGG16 and ResNet-
50). Finally, pixel value normalization was applied using standard statistics derived from the
ImageNet dataset, mean of [0.485, 0.456, 0.406] and standard deviations [0.229, 0.224, 0.225],
ensuring consistency during training.

i.  Custom CNN: 8 convolutional layers (3x3 kernels, ReLU activation) and Max-pooling (2x2,
stride=2) after every 2 convolutions with global average pooling + dense layer (softmax
output).

ii. ResNet50: The model has 49 convolutional layers grouped into 16 residual blocks; shortcut
paths help keep gradients flowing (avoiding gradient decay), and during fine-tuning we freeze
about half the layers, using ImageNet-pretrained weights.

iii.  VGG16: The network uses 13 convolutional layers arranged in five blocks; during transfer
learning we keep blocks 1-4 frozen and fine-tune block 5, then add a custom classifier with
dense layers of 512 and 256 units ending in a 2-unit output.

3.3 Training Pipeline

Adam optimizer with a learning rate of 1e*, B1=0.9, B2=0.999 is used to train, combined with
cosine annealing scheduling of Tmax=20, Nmin=1e€®. Categorical cross-entropy loss for training models
and regularized through L2 weight decay and dropout (0.5). Early stopping (patience=10), model
checkpointing, and tensor Board logging were employed to monitor and optimize the training
process.

3.4 Evaluation and Metrics
Evaluated performance using standard metrics: accuracy, precision, recall, F1-score, and the area
under the ROC curve (AUC) and confusion matrices. McNemar’s test was applied to evaluate

statistical significance. For model interpretability, Grad-CAM was used to visualize important facial
regions, and t-SNE plots illustrated how well the features separated different classes.
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Autism Detection System
Autism Detection System

(—

Analysis Result

The patient is identified as Autistic

Fig. 6. Upload an image to detect autism Fig. 7. Upload a patient's image to analyze autism-
characteristics to predict the patient is identified related characteristics and determine if the
as autistic or non-autistic patient is classified as autistic

Autism Detection System

()

Analysis Result

The patient is identified as Non-Autistic

[ wewawwss
Fig. 8. Uploads a patient's image to analyze autism-
related characteristics and determine if the patient is
classified as non-autistic

Table 1
Comparison table for existing and proposed algorithms
MODEL ACCURACY F1-SCORE AUC-ROC
Existing Systems
Handcrafted Features 72-78% 68-74% 0.71-0.76
Vanilla CNN 85% 82% 0.83
VGG16 (Prior Work) 89% 87% 0.89
Proposed Approach
Custom CNN 87.10% 86.20% 0.88
ResNet50 92.40% 91.70% 0.93
VGG16 (Fine-tuned) 89.30% 88.90% 0.9

132



Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 125-134

Model Performance Metrics

(] Model Accuracy Comparison

100

87.10%

95%

90+ 89.30%"

80 4

Accuracy

70 4

60 1

50 4 T
VGG16

CNN

ResNet50
mn

Fig. 9. Model accuracy comparison

4. Conclusion and Future Scope

This paper demonstrates the effectiveness of a modular deep learning framework for early
detection of autism spectrum disorder using facial imagery. Among the architectures tested, ResNet-
50 delivered the highest classification performance, affirming its capability to capture subtle facial
patterns. The integration of reproducibility tools, such as fixed seeds, structured logging, and
modular architecture, ensures that the system can be reliably adapted and verified in clinical settings.

The framework not only addresses the limitations of existing diagnostic tools but also reduces
diagnostic latency, providing a scalable and interpretable solution for ASD screening. The inclusion of
Grad-CAM visualizations enhances clinician trust by offering visual explanations aligned with known
ASD biomarkers.

Future work will focus on expanding the dataset to enhance generalizability, incorporating 3D
facial modeling for richer feature extraction, and exploring transformer-based architectures for
further performance gains. Additionally, extending the system to support decentralized learning via
federated models may improve privacy and adaptability across institutions. Ultimately, this work
serves as a foundation for Al-driven neurodevelopmental diagnostics that are ethical, accurate, and
accessible.
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