

Journal of Advanced Research in Computing and Applications 39, Issue 1 (2025) 146-163

146

Journal of Advanced Research in
Computing and Applications

Journal homepage:
https://karyailham.com.my/index.php/arca

2462-1927

Continuous Integration and Continuous Delivery Based on ARM Cortex-
M4 Embedded Software Automation Testing

Yingbei Niu1, Soo See Chai1,*, Kok Luong Goh2, Kim On Chin3, Emily Sing Kiang Siew2

1 Faculty of Computer Science and Information Technology Universiti Malaysia Sarawak (UNIMAS) 94300 Kota Samarahan Sarawak, Malaysia
2 Faculty of Computing and Software Engineering, i-CATS University College, Jalan Stampin Timur, 93350 Kuching, Sarawak, Malaysia
3 Faculty of Computing & Informatics, University Malaysia Sabah, Kota Kinabalu, 88400, Malaysia

ARTICLE INFO ABSTRACT

Article history:
Received 15 July 2025
Received in revised form 20 August 2025
Accepted 26 August 2025
Available online 4 September 2025

This paper explores how automated testing can be effectively integrated into the
continuous integration and continuous delivery (CI/CD) process to enhance
development efficiency and software quality in embedded systems. Despite the
increasing complexity of embedded software, traditional testing methods often
struggle with long development cycles and poor cross-team collaboration. To address
these challenges, this study proposes a novel strategy that incorporates automated
GPU-based testing pipelines into CI/CD workflows. The approach involves designing
and embedding automated testing modules within existing build and deployment
stages using standardized testing frameworks and monitoring tools.The proposed
strategy was validated through real-world embedded system projects. Experimental
results demonstrated significant reductions in testing time, improved software
reliability, and enhanced team coordination. Furthermore, example validations
confirmed the consistency and effectiveness of the approach across different system
architectures. The discussion analyzes the broader impact of automated testing within
CI/CD pipelines, highlighting both the performance benefits and implementation
challenges. This research contributes to the ongoing innovation in embedded systems
development by offering a practical solution to common testing bottlenecks. It
encourages the wider adoption of automated testing to meet dynamic market
demands, improve software quality, and increase overall customer satisfaction. Future
work will explore further optimization of feedback mechanisms and integration tools
to support more scalable and efficient testing architectures.

Keywords:
Embedded software; automated testing;
continuous integration; continuous
delivery

1. Introduction

In today's software development field, continuous integration (Continuous Integration, CI) and
continuous delivery (Continuous Delivery, CD) have become indispensable practices in the
development of high-quality and efficient software. These two concepts represent a revolutionary
change in the software development process, by automating development, testing, and deployment,
enabling faster iteration cycles, higher quality standards, and more flexible software delivery.

* Corresponding author.
E-mail address: sschai@unimas.my

https://doi.org/10.37934/arca.39.1.146163

https://karyailham.com.my/index.php/arca

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 146-163

147

 With the extensive application of embedded system in modern life, the development of
embedded software is also facing higher and higher requirements. Embedded systems must not only
have a high degree of reliability and security, but also meet the evolving market needs. In this context,
it becomes critical to introduce the concept of continuous integration and continuous delivery into
embedded software development. However, the special nature of embedded systems and the strict
constraints make implementing CI / CD even more complicated and challenging.

The purpose of this paper is to investigate how automated testing can be integrated into
continuous integration and continuous delivery processes of embedded systems to achieve faster
development cycles and higher quality standards. This is not only important for embedded software
developers and teams, but also has a profound impact on the reliability and security of embedded
systems.

A series of key issues arise in the CI / CD process of introducing automated testing into embedded
systems; How to select the automated test tools and frameworks suitable for embedded systems?
How are test cases effectively designed and managed to meet the testing requirements of embedded
systems? How do you build a reliable, continuous integration environment and ensure automated
testing and validation for each code submission? How to monitor and analyze the results of
automated tests, and find and solve problems in time? How to ensure the stability and security of
the embedded system during continuous delivery?

Through in-depth study and exploration of these issues, this study aims to provide practical
guidelines and best practices for the embedded software development field to help development
teams better apply the concept of continuous integration and continuous delivery and improve
development efficiency and software quality.

2. Methodology
2.1 Evolution of Embedded System Testing

The testing of embedded systems has always been an important issue in the field of software
engineering [1-3]. With the continuous development of technology, embedded system testing has
also undergone many evolution. Early embedded system testing was mainly focused on functional
testing [4-6], namely, ensuring that the software functions properly under certain conditions.
However, with the increasing complexity of embedded systems, relying solely on functional testing
is no longer sufficient to meet the quality and reliability requirements. Therefore, more detailed test
methods such as performance tests [7-9], safety tests and reliability tests [10,11] are gradually
introduced. Recently, the concept of continuous integration and continuous delivery has begun to be
widely used in embedded system testing to accelerate the development cycle and improve software
quality.

Fig. 1. Evolution of the embedded system tests

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 146-163

148

Section 1: Early Testing

In the initial phase of embedded system testing, functional testing served as the primary focus.
This stage was dedicated to verifying whether the software functioned correctly under specific,
predefined conditions. The primary goal was to validate that the embedded system could accurately
perform the tasks for which it was designed [12-14]. By ensuring the basic operational correctness,
functional testing laid the essential foundation for more advanced testing methods.

Section 2: Advanced Testing

As embedded systems increased in complexity, more rigorous testing approaches became

necessary. Performance testing emerged to ensure that systems operated efficiently and within
acceptable performance parameters [15-17]. This type of testing focuses on validating the system’
s speed, responsiveness, and stability when subjected to particular workloads. Besides that, security
testing gained significant attention as protecting embedded systems from potential threats and
vulnerabilities became crucial [18,19]. Security testing involves identifying and addressing
vulnerabilities, safeguarding data, and ensuring compliance with relevant security regulations. In
addition, reliability testing was introduced to verify that the system could perform consistently and
accurately over a specified period. This testing aims to uncover hidden issues that may affect the
system's long-term durability and dependability. Together, these advanced testing practices
addressed the growing demands for high performance, security, and reliability in embedded systems.

Section 3: Modern Practices

In recent years, Continuous Integration and Continuous Delivery (CI/CD) practices have become
widely adopted in embedded system testing [20]. CI/CD integrates automated testing processes into
the development lifecycle, enabling rapid feedback and facilitating more frequent software releases.
Therefore, this approach accelerates development cycles while significantly improving software
quality through continuous validation.

The progression of testing methodologies for embedded systems is visually represented by the
timeline, which reflects how testing practices have evolved in response to increasing system
complexity and higher performance expectations. Each phase introduces new methodologies that
either build upon or resolve the limitations of the previous stages. Thus, embedded system testing
has developed into a more comprehensive and adaptive discipline, capable of addressing the
dynamic and stringent requirements of modern embedded applications.

2.2 Principles and Advantages of Continuous Integration and Continuous Delivery

Continuous integration (CI) and continuous delivery (CD) are the core principles in modern
software development [21]. CI means frequent integration of code into a shared repository and
automated testing to ensure that the new code does not disrupt existing functionality. CD further
extends the concept of CI to the automated deployment and delivery phase, enabling faster software
delivery to end-users.

The adoption of continuous integration and continuous delivery (CI/CD) brings several significant
advantages to embedded system development. One key benefit is the ability to achieve a faster
development cycle. By automating testing and deployment processes, CI/CD minimises manual
intervention and greatly improves development efficiency. This acceleration enables teams to

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 146-163

149

release updates and new features more frequently, which is essential in fast-paced development
environments.

In addition, CI/CD contributes to maintaining higher quality standards. Automated testing
enhances test coverage, reduces the likelihood of human error, and ensures the stability and
reliability of the software. Furthermore, this approach supports continuous validation throughout
the development process, which helps to identify defects at an early stage.

Another important advantage is the improved ability to detect and resolve problems quickly. The
CI/CD process provides real-time feedback, allowing issues to be rapidly identified and addressed.
This immediate visibility of defects helps prevent the accumulation of unresolved problems and
significantly shortens the time required for troubleshooting and repair.

Besides that, CI/CD fosters better team collaboration. It encourages developers to integrate and
deliver code frequently, promoting closer cooperation and more effective communication among
team members. This collaborative environment supports smoother workflows and enhances overall
project coordination. Therefore, the integration of CI/CD not only improves technical outcomes but
also strengthens team dynamics and development efficiency.

2.3 Role of Automated Testing in Software Development

 Automated testing plays an important role in software development [22]. It can automatically
perform the test cases, generate detailed test reports, and improve the efficiency and consistency of
the tests. Automated testing can be applied to different levels of testing, including unit, integration,
functional, and performance testing. It can not only detect and report problems, but also speed up
the process of identifying and solving problems.

 In the context of continuous integration and continuous delivery, automated testing becomes
particularly important. It allows to automatically run tests after each code submission, quickly find
problems and notify the development team in a timely manner. This rapid feedback helps to reduce
the accumulation of problems, thereby improving the quality and maintainability of the software.

Through these literature reviews, we can see that embedded system testing has evolved into a
more complex and automated process, with continuous integration and continuous delivery
becoming an effective means to accelerate the development cycle and improve software quality, in
which automated testing plays a key role. This study aims to further explore how automated testing
can be integrated into the CI / CD process of embedded systems to achieve more efficient
development and higher quality software delivery.

3. Methods and Strategies

A structured development process that emphasizes the importance of automation, continuous
integration and deployment, and quality of code. Such processes are designed to ensure code
robustness, security, and efficiency. Figure 1 is the automated test business scenario.

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 146-163

150

Fig. 2. Automatic test business scenario diagram

The diagram illustrates a typical business scenario in embedded software development. The

development library serves as the workspace where developers carry out coding activities. Upon
completion, the developed code is submitted to a central library through the code submission
process. This step ensures that all code changes are systematically collected for further processing.

Following submission, the code undergoes review. Once it is deemed reliable and meets
predefined quality standards, it is moved into the controlled library. This controlled repository
functions as a stable version for further verification. Subsequently, the validated code is transferred
to the product library, where it becomes ready for formal release or deployment.

The configuration library plays a supporting role by storing configuration profiles and related
settings essential for the development and deployment processes. Alongside development, design
tasks—such as interface design and functional planning—are systematically undertaken to guide and
structure the software's architecture [23].

Defect management is integral to the process, providing a systematic approach to track, analyse,
and resolve any defects identified during code review or testing. This defect tracking ensures that
issues are promptly addressed and do not propagate to later stages.

A fully automated testing framework is implemented, encompassing static analysis, performance
testing, interface testing, and unit automation testing. These automated processes significantly
contribute to the reliability and robustness of the software [24]. In parallel, manual testing remains
necessary for certain cases that cannot be fully automated or require human judgement [25].

The workflow incorporates continuous integration (CI), an automated pipeline that includes code
compilation, quality checks, and unit testing. Codes that fail these stages are blocked from
progressing, thus maintaining high standards at every step. Upon passing the CI process, the software
enters continuous deployment (CD), which automatically deploys the code to the appropriate
environment without manual intervention.

The development process transitions through multiple environments. The development
environment is where the initial coding and basic testing occur. The test environment supports
comprehensive and often automated testing, ensuring that all functional and performance aspects
are validated. Finally, the production environment hosts the deployed software for end-user access
and operational use.

An embedded software development platform underpins the entire process, integrating the
necessary tools and technologies to facilitate streamlined development, testing, and deployment.

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 146-163

151

The CD deploys the integrated code to the real operating environment (production environment)
on the basis of continuous integration. After completing unit testing, you can deploy code to more
testing in the Staging environment connected to the database. If the code is fine, you can continue
to manually deploy to the production environment. The figure below reflects the working mode of
CI / CD.

Fig. 3. The CI / CD working mode

The diagram presents the process of Continuous Integration (CI) and Continuous Deployment

(CD) in detail. It systematically illustrates each key step from code development to production
deployment.

Firstly, the developer is represented by two icons featuring "10101", symbolising programmers
who write or modify code within their local development environment. Upon completing or updating
the code, developers proceed to check-in, a process where the newly written or modified code is
submitted to a central code repository. This check-in operation is essential for tracking all code
changes and maintaining version control.

The source repository typically refers to a system such as Git or SVN, which centrally manages all
submitted code. Once new code enters the repository, the CI server automatically initiates the
continuous integration workflow. The server begins with the build phase, where the code is compiled
or transformed into executable formats or deployable packages.

Following the build process, the CI server performs automated testing to verify that the recent
code changes do not introduce new defects or disrupt existing functionality. Upon completion of
these tests, the result is generated, indicating whether the build has passed and detailing any issues
encountered. These results are promptly fed back to the developer for immediate attention, allowing
either rapid bug fixes or continued development.

The deployment process then proceeds through three distinct stages: Test, Staging, and
Production. In the Test phase, the software is deployed to a test environment that closely simulates
real-world operating conditions. Next, the Staging phase serves as a pre-production environment
where the software undergoes further validation to confirm its readiness. Finally, in the Production
phase, the validated software is released to the live environment for use by end users.

Importantly, a manual step is typically required before the software transitions from staging to
production. This manual review or audit is critical to ensure that all testing criteria have been met
and that the software is fully prepared for deployment in the production environment.

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 146-163

152

Overall, the diagram comprehensively demonstrates the seamless transition from code
development to production release. It underscores the pivotal role of automated testing and
deployment in ensuring software quality and accelerating delivery cycles. Additionally, it highlights
the necessity of manual validation at critical checkpoints to safeguard the reliability of the final
product.

3.1 Method to Integrate Automated Testing into the CI / CD Process

Integrating automated testing into the CI / CD process requires a clear set of steps and strategies:

Fig 4. CI/CD flow chart

Version Control and Code Repository Management is a fundamental aspect of modern software

engineering. Utilising version control tools such as Git ensures that all source code is securely stored
within a central repository. This setup allows team members to collaborate efficiently, manage code
branches, and track changes with precision. The central repository facilitates seamless collaboration
and maintains a complete history of code evolution.

Automated Build processes are essential for maintaining consistency and reducing human error.
The system is configured to automatically trigger builds whenever new code is submitted to the
repository. This build process typically involves code compilation, packaging, and initial deployment
steps. Automation at this stage ensures that the software is consistently built under controlled,
repeatable conditions.

Automated Test Integration is a critical part of the continuous delivery pipeline. Various types of
automated tests—such as unit tests, integration tests, and functional tests—are integrated directly into
the build process [26]. By employing appropriate testing frameworks and tools, these tests can be
executed automatically with each build, ensuring that new code does not compromise existing
functionality. Detailed test reports are automatically generated to provide rapid feedback on
software quality.

A Continuous Integration (CI) Server is deployed to orchestrate these automated activities. The
CI server constantly monitors the version control repository for changes. Upon detecting new code

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 146-163

153

submissions, it automatically triggers the build and test processes. Widely used CI servers, such as
Jenkins, play a pivotal role in enabling reliable, repeatable integration workflows.

Automated Deployment further enhances the efficiency of the software delivery process. Once
the code passes all automated testing phases, the system automatically deploys the tested software
to the appropriate environments. This may include the development, testing, and production
environments [27]. Automated deployment minimises manual intervention and reduces the
likelihood of configuration errors.

Finally, Automated Monitoring and Feedback mechanisms are established to maintain high
system observability. Continuous monitoring tools and alerting systems are integrated to promptly
notify the team of potential issues. Automated test reports are generated and shared with relevant
stakeholders, ensuring timely feedback and promoting rapid issue resolution.

3.2 Automated Tools and Framework for Test Case Design and Execution

The diagram describes a framework or architecture for a software test, especially for embedded
software. Figure 5 provides a detailed depiction of a data-driven embedded software testing
framework, with each component playing a specific role in ensuring comprehensive test coverage
and process automation.

Fig. 5. Automated test framework

The High-Level Script represents an abstract and structured description of test scenarios. It

typically outlines the objectives, key actions, and expected outcomes of the test. Beneath this layer,
Low-Level Scripts contain the specific test commands and detailed execution steps required to
implement the high-level scenarios. These low-level scripts directly interact with the system under
test.

The Script Driver serves as the execution engine within the framework. It orchestrates both high-
level and low-level scripts, facilitating their execution and potentially invoking auxiliary functions. It
also manages interactions between scripts and other components of the system.

The Support Function Library provides reusable auxiliary functions that can be called by the script
driver or individual test scripts during execution. These supporting utilities enhance testing efficiency
by offering common operations, reducing redundancy across scripts.

The Interface Mapping Table plays a critical role in maintaining the correct associations between
test scripts and system interfaces. It ensures that the script driver correctly identifies and interacts
with the intended functions or modules during testing.

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 146-163

154

The Data Driver is responsible for managing test data. It retrieves input datasets from Data Files
and supplies them to low-level scripts or directly to the embedded software under test. These Data
Files contain structured input data for various test scenarios and conditions, supporting the data-
driven nature of the framework.

At the core of this structure is the Embedded Software to be Tested. It interacts with all the above
components and undergoes rigorous evaluation across diverse test cases to verify its correctness,
robustness, and performance [28].

Overall, the figure illustrates an integrated, automated framework that supports in-depth, data-
driven testing of embedded software. By combining layered scripting, automated data management,
and reusable support tools, this approach enables scalable and efficient testing processes.

3.3 Continuous Integration of The Environment Building and Configuration

 For successful continuous integration, an appropriate development and testing environment

needs to be established. Here are some key steps:

i. Environment Configuration Management: Use tools such as Docker, Vagrant, etc. to
ensure consistency in the development and test environment to avoid problems in
different environments.

ii. Automate deployment scripts to create automated deployment scripts to enable rapid
and reproducible deployment of applications to different environments.

iii. Continuous integration tool configuration, configure the continuous integration server,
ensure that it can automate build, testing, and deployment tasks and generate
corresponding reports and logs.

These methods and strategies will help to integrate automated testing into the CI / CD process of
embedded systems, improving development efficiency and software quality. In the subsequent
experiments and results section, you can detail how to implement these strategies and their impact
on the project.

4. Experimental Verification
4.1 Experimental Design and Execution

In this study, a development board based on the widely used 32-bit microcontroller ARM Cortex-

M4 processor was used as a test object. The ARM Cortex-M4 microcontroller has powerful processing
power, low power consumption and efficient function, and is very popular in embedded system
development. The selection of ARM Cortex-M4 microcontroller as a test object improves the utility
and reliability assessment of the embedded software under developed. This selection ensures that
the testing process is very similar to the real-world conditions, thus allowing for a more accurate
assessment of the software's performance, functionality, and overall robustness. This study aims to
develop stable and reliable embedded software to meet the needs of practical application. The
embedded software allows for data acquisition, processing, storage, and control of signal output[29].
To ensure optimal performance, the software is designed to provide real-time responsiveness, to
enable a low-power operation, maintain stability, display fault tolerance, and provide adequate
security measures. The development board shall connect and respond to a variety of sensor data and
execute different instructions, including data acquisition, processing, storage, and control signal

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 146-163

155

output. Development boards typically integrate multiple hardware modules and interfaces so that
developers can create and test different hardware and software applications.

32-bit microcontroller ARM Cortex-M4 development board, integrated development
environment Keil, version control tool Git. Automated test tools and framework Selenium and JUnit.
A computer or server is used to set up the CI / CD environment.

4.1.1 Requirements analysis and project establishment

Prior to the experiment, the requirements analysis of the embedded system was conducted to

test the module input, output and interaction functions of the development board, including but not
limited to sensor data response, instruction execution and control signal output, GPIO module, ADC
module, DAC module, PWM module, timer module, UART module, SPI module, I2C module, USB
module, Ethernet module, temperature sensor, light sensor, acceleration sensor. To meet the
requirements of real-time performance, the time threshold for the data acquisition and control
algorithm execution was set at 5 ms, ensuring that various parameters and signals of the peripheral
system can be monitored and responded in real time. Create a new project Project, and set up the
development environment to support the ARM Cortex-M4 development board.

4.1.2 Version control and version warehouse

Using Git as a version control tool, a version warehouse was created for the project, submitted

at least once daily, ensuring real-time backup of the code and version management. To achieve high
reliability, a dual-mode redundancy system was designed and the error detection frequency was set
to 1Hz.

4.1.3 Code-based and test-case design

 During the coding phase, tests for environmental adaptation were conducted, including a

temperature range of-40℃ to 85℃, a humidity range of 5% to 95%, and vibration and
electromagnetic interference to stabilize the system under various environmental conditions. Start
writing the code, and simultaneously design the corresponding automated test cases. The test case
shall cover both functional tests and unit tests, ensuring that all aspects of the project are covered.

For each module and function point of the system, detailed test cases including normal process,
abnormal process and boundary conditions are designed to ensure the robustness and stability of
the code. In order to cover all possible scenarios, work closely with the development team and
business teams to continuously improve and update the test case library.

4.1.4 CI / CD environment settings

The CI / CD environment is configured on a dedicated computer and uses the Jenkins as the CI /

CD tool. At least 1000 tests of communication interfaces were conducted, including various
peripheral, interfaces to ensure stable communication of the development board with the peripheral
sensors.

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 146-163

156

4.1.5 Automated test and integration

Integrate the automated tests into the CI / CD process. Ensure that the execution of the test cases

is automatically triggered after each code submission. Functional testing using Selenium to simulate
user operation and verify that the functionality of the system is as expected. The Selenium scripts are
regularly reviewed and updated to accommodate system changes and new requirements. Unit
testing using JUnit, unit tests were written for each function to verify the logical correctness of the
code and exception handling power. Code coverage is tracked, ensuring that both important code
paths and logical branches are test-covered. Through Mock object and dependency injection,
external dependencies can be isolated for accurate unit testing. Integrate the automated testing into
the CI / CD process, conduct an hourly system health check, and automatically trigger the testing
after each code submission, and carry out at least one comprehensive test per day to realize the
function of fault detection and diagnosis.

4.1.6 Monitoring and feedback settings

 In order to meet the requirements of low power consumption, the system monitors the energy
consumption in real time, the data is recorded every minute, and the warning threshold is set at 50W.
A real-time feedback mechanism was set up to notify the development team once a problem is found.
Generate detailed test reports, including test coverage, execution time and test results, failed test
cases, error logs, etc., to facilitate team analysis and improvement[30]. And provide it to the team
members [31].

After new feature development and bug repair, regression tests are performed to ensure that the
modifications do not introduce new errors. Performance tests were also performed to simulate
scenarios with high concurrency and large data volume to ensure the stability and response speed of
the system under pressure. Through these measures, the CI / CD process greatly improves the
efficiency of development and the quality of the software, ensuring that every release is rigorously
tested and validated.

4.1.7 Measurement of reduced development cycles

 Standard development cycles were recorded in days before the start of the experiment. Then,

after applying the CI / CD process, the new development cycle is recorded. Calculate the percentage
reduction in the development cycle. Record the time of each development cycle, and conduct the
safety assessment once weekly and conduct the deep safety test once a month to ensure the safety
of the system.

 By comparing the Gantt chart, it is obvious that after the introduction of the CI / CD process,
especially in the "environmental configuration" and "test integration" stages, the development cycle
of the project is significantly shortened, thus improving the development efficiency. The Gantt chart
clearly shows the various phases of the project and its duration, which helps the team members to
understand the project progress and immediate tasks, and ensure the orderly progress of the project.

The project team strengthened internal collaboration and communication with customers, and
was able to timely solve problems and demand changes in the development process, ensuring the
smooth progress and successful delivery of the project. The project team regularly conducts safety
assessments and in-depth tests to ensure the safety of the project, which is an important guarantee
for the success of the project. By recording and analyzing the time of each development cycle, the
project team continuously optimizes the development process and improves the work efficiency,
which contributes to the smooth progress of the project.

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 146-163

157

i. Development efficiency and time management
In the case of CI / CD, each stage was continuous and compact, with a total development
period of 35 days. In the absence of CI / CD, the total development cycle increased to 50 days
due to the environmental configuration and the test integration phase of 10 days respectively,
15 days more than CI / CD, nearly 43% compared to the use of CI / CD.

ii. Project stage management
Whether using CI / CD or without CI / CD, projects were divided into seven major phases, each
with clear start and end times, which helped the team to better manage the project schedule
and resources.

iii. Team cooperation and communication
From the orderly progress of the project, we can see that the cooperation and
communication between the teams is smooth.

iv. Safety management
Security management is a part of the project [32].

v. Customer feedback and demand change
The figure shows the various stages and the schedule of the project.

Fig. 6. Project development cycle

In conclusion, the initial development cycle is 50 days and the development cycle after CI / CD,
percentage reduction: (50-35) / 50 * 100% = 30%. By introducing CI / CD, the project achieves efficient
and professional project management, strengthening team collaboration and customer
communication, the emphasis on security management, and the optimization of time management.

4.1.8 Measurement of the test coverage rate

Use of the automated test tools and framework to measure test coverage. Tocan reports tool be

used to get the exact value. Test coverage was measured with an initial coverage of 80% and the goal
to improve to 97%. To meet the firmware update requirements, the firmware update test is
conducted monthly to ensure that the firmware update function is supported. Ensure that the test
coverage rate exceeds 95%.

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 146-163

158

Fig. 7. Test coverage improvement

 The improvement in test coverage can be clearly seen through the figure above and to ensure

that the indicators meet the predetermined goals. This helps the project team to better understand
the status of test coverage and to take the necessary steps to improve coverage. Increase in test
coverage:

Significant coverage for all types of tests. Overall test coverage improved from an initial 80% to
97%, exceeding the set target of 95%.

 Functional test coverage, unit test coverage, and code path coverage also exceeded their
respective target achievement rates.

Measurement of test coverage using automated test tools and frameworks facilitates a more
precise and efficient assessment of the quality and robustness of the code. Through the practice of
continuous integration / continuous deployment (CI / CD), the team is able to ensure that code
changes do not reduce test coverage, but rather help improve coverage. The project team
successfully increased the test coverage to over 95%, which helped to reduce the defects in the
software and improve the product quality and reliability. With the tool generated reports, the team
can obtain the exact value of test coverage to better understand the status of the project and take
the measures necessary steps to maintain or improve the test coverage.

While test coverage has reached high levels, the team continues to ensure that new code
submissions do not reduce coverage. The team can further explore more advanced testing strategies
and tools to continuously optimize the testing process and ensure the quality of the software. In
short, the project has performed well in the test coverage and successfully achieved the set goals,
but still remain vigilant and continuously optimize the testing process.

4.1.9 Measurement of the defect resolution speed

Record the time of defect detection and resolution. Compare the speed of defect resolution
before and after using the CI / CD process and calculate the percentage improvement in the CD speed.
In the experiment, the detection and resolution time of each defect were recorded as shown in the
figure.

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 146-163

159

Fig. 8. Defect resolution speed measurement

The mean time to resolve defects using conventional methods was 5 days, and that after using CI
/ CD was 2.5 days,

Percentage improvement in defect resolution speed: (5-2.5) / 5 * 100% = 50%

4.1.10 Experimental summary and conclusion

Based on the experimental results, the effects of the development board using the 32-bit
microcontroller ARM Cortex-M4 combined with CI / CD and automated testing were summarized.
Emphasis on the advantages of improved development efficiency, quality standards and team
collaboration.

4.2 Efficiency and Effectiveness of Continuous Integration and Continuous Delivery Processes

The following effects and improvements were observed:

i. Faster development cycles, and CI / CD processes have significantly reduced development
cycles. Developers are able to submit code more frequently without having to wait for a long
manual testing and deployment process.

ii. Higher quality standards, automated testing, and continuous integration ensure higher
software quality. Problems can be found and solved in the early stage, thus reducing the
workload of later maintenance.

iii. Better teamwork, CI / CD facilitated collaboration of development teams. Tests are run
automatically with each code submission, making the responsibility for the problem clearer
and the team members to resolve it quickly.

5. Discussion
5.1 Significance and Impact of The Experimental Results

The experimental results reveal the significance and impact of integrating automated tests into

the CI / CD process of embedded systems. First, a significant reduction in the development cycle was
observed, which is essential to meet market demand and changes in competitors. Faster
development cycles allow products to come to market faster, thus increasing competitiveness.

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 146-163

160

 Secondly, the high-quality standards are the key elements of the embedded systems. Automated
testing and continuous integration ensure improved software quality, reduced accumulation of
errors, lower maintenance costs, and enhanced reliability and stability of the system. This is
particularly important for embedded system applications, such as medical, automotive, industrial
control, etc.

Most importantly, the experimental results indicate an improvement in teamwork. The CI / CD
process encourages close collaboration between developers, testers, and operations personnel,
making the responsibility of issues clearer. This helps to find and solve problems faster, improving
the efficiency and satisfaction of the whole team.

5.2 Advantages and Challenges of Automated Testing in CI / CD

Although automated testing brings many advantages in CI / CD, there are some challenges. During
the discussion, these aspects need to be analyzed.

 The advantages are as follows:

i. Efficient testing: Automated tests can perform test cases quickly, provide quick feedback,
and help quickly detect problems.

ii. Improve quality: Through automated testing, increased test coverage, reduced human
error, and enhanced software quality.

iii. Automated Deployment: Part of the CI / CD process is automated deployment, which
ensures that every code submission can be quickly deployed to a different environment.

The challenges are as follows:

i. Maintenance of automated test cases: As the code changes, test cases need to be updated
and maintained, or test cases fail[33].

ii. Resource requirements: Building and maintaining the CI / CD environment requires
certain resources and investment.

iii. Learning Curve: Team members may need time to adapt to the CI / CD process and
automated testing tools.

5.3 Future Research Direction and Improvement Strategies

In terms of future research direction and improvement strategies:

i. Continuous improvement process, Further improved CI / CD processes, including
automated testing, deployment, and monitoring, to improve efficiency and stability.

ii. Research on test automation tools, Continue to study and evaluate new test automation
tools and frameworks to meet the needs of embedded system development.

iii. Integrated security testing, Automatic safety testing is introduced to ensure the security
and reliability of the embedded systems.

iv. Machine learning and artificial intelligence applications, Explore how machine learning
and artificial intelligence can be applied to automated testing to improve test coverage
and the ability to detect hidden flaws.

v. Cross-teamwork, Cross-teamwork research involving development, testing, operations,
and security teams to achieve a more comprehensive CI / CD process.

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 146-163

161

Through continued research in these directions and continuous improvement of CI / CD processes
and automated testing strategies, the efficiency and quality of embedded system development can
be further improved against evolving market demands and technical challenges.

6. Conclusion

By studying in detail the methods and effects of integrating automated testing into the

continuous integration and continuous delivery (CI / CD) process of embedded systems, drawing the
following important conclusions:

First, we demonstrate that automated testing and continuous integration have great implications
for embedded system development. Through the experimental results, a significant reduction in the
development cycle, higher software quality standards, and better team collaboration were clearly
observed. These results demonstrate that integrating automated testing into embedded system
development is not just a trend but an essential strategy to significantly improve the efficiency and
quality of software development.

Secondly, it highlights the advantages of automated testing in CI / CD, including efficient testing,
quality standard improvement, and automated deployment. However, also recognized possible
challenges in the automated testing process such as maintenance of test cases and resource
requirements. Nonetheless, these challenges can all be addressed with appropriate strategies and
tools, and the advantages far outweigh the challenges.

Most importantly, the embedded system development industry is encouraged to adopt this
strategy. Continuous integration and continuous delivery and automated testing are not only for
traditional software development but also for embedded system development. By adopting these
best practices, embedded system developers can better meet changing market needs, improve
software quality, and ultimately achieve higher customer satisfaction.

In the future, further research and improvement of automated testing and CI / CD processes are
encouraged, especially for applications in the field of embedded systems. Some future research
directions are also proposed, including research on test automation tools, integration of security
testing, machine learning and application of artificial intelligence. Through continuous efforts, the
efficiency and quality of embedded system development can be further improved to meet future
challenges and opportunities.

In conclusion, this paper highlights the importance of integrating automated testing into the
development of embedded systems and encourages the industry to adopt this strategy to improve
software quality and development efficiency. This strategy will be widely used in the field of
embedded system development, to provide higher quality software for future embedded systems.

Acknowledgement
This research was not funded by any grant.

References
[1] Zheng, Xiaoxia, and Fang Dong. "[Retracted] Application of Virtual Instrument Technology in the Teaching of

Embedded System Course." International Transactions on Electrical Energy Systems 2022, no. 1 (2022): 6721450.
https://doi.org/10.1155/2022/6721450

[2] Sozzo, Emanuele Del, Davide Conficconi, Alberto Zeni, Mirko Salaris, Donatella Sciuto, and Marco D. Santambrogio.
"Pushing the level of abstraction of digital system design: A survey on how to program fpgas." ACM Computing
Surveys 55, no. 5 (2022): 1-48. https://doi.org/10.1145/3532989

[3] Ren, Xinguang, and Yongmin Cui. "Embedded system intelligent platform design based on digital multimedia artistic
design." Wireless Communications and Mobile Computing 2021, no. 1 (2021): 3959199.
https://doi.org/10.1155/2021/3959199

https://doi.org/10.1155/2022/6721450
https://doi.org/10.1145/3532989
https://doi.org/10.1155/2021/3959199

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 146-163

162

[4] Zhang, Tian. "Application of AI-based real-time gesture recognition and embedded system in the design of English
major teaching." Wireless Networks (2021): 1-13. https://doi.org/10.1007/s11276-021-02693-0

[5] Zhong, Cao, Li Wen-Feng, Liu Chen, Peng Yu-Yu, Huang Ying, and Xiao Zhong-Liang. "Design and fabrication of
embedded wireless monitoring system based on Bluetooth low energy transmission for potentiometric
sensors." Chinese Journal of Analytical Chemistry 47, no. 2 (2019): 229-236.

[6] Belhamel, Loubna, Arturo Buscarino, Antonio Cucuccio, Luigi Fortuna, and Gaetano Rasconà. "Model-based design
streamlines for STM32 motor control embedded software system." In 2020 7th International Conference on
Control, Decision and Information Technologies (CoDIT), vol. 1, pp. 223-228. IEEE, 2020.
https://doi.org/10.1109/CoDIT49905.2020.9263910

[7] Kouki, Rihab, Alexandre Boe, Thomas Vantroys, and Faouzi Bouani. "Autonomous Internet of Things predictive
control application based on wireless networked multi-agent topology and embedded operating
system." Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control
Engineering 234, no. 5 (2020): 577-595. https://doi.org/10.1177/0959651819870340

[8] Aparo, Carmelo, Cinzia Bernardeschi, Giuseppe Lettieri, Fabio Lucattini, and Salvatore Montanarella. "An analysis
system to test security of software on continuous integration-continuous delivery pipeline." In 2023 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW), pp. 58-67. IEEE, 2023.
https://doi.org/10.1109/EuroSPW59978.2023.00012

[9] Bhadra, Sushovan. "A stochastic Petri net model of continuous integration and continuous delivery." In 2022 IEEE
International Symposium on Software Reliability Engineering Workshops (ISSREW), pp. 114-117. IEEE, 2022.
https://doi.org/10.1109/ISSREW55968.2022.00050

[10] Parama, Restu Agung, Hudan Studiawan, and Rizky Januar Akbar. "Implementasi Continuous Integration dan
Continuous Delivery Pada Aplikasi myITS Single Sign On." Jurnal Teknik ITS 11, no. 3 (2022): A264-A269.
https://doi.org/10.12962/j23373539.v11i3.99436

[11] Singh, Amarjeet, Vinay Singh, Alok Aggarwal, and Shalini Aggarwal. "Improving Business deliveries using Continuous
Integration and Continuous Delivery using Jenkins and an Advanced Version control system for Microservices-based
system." In 2022 5th International Conference on Multimedia, Signal Processing and Communication Technologies
(IMPACT), pp. 1-4. IEEE, 2022. https://doi.org/10.1109/IMPACT55510.2022.10029149

[12] Merino, Pablo, Gabriel Mujica, Jaime Señor, and Jorge Portilla. "A modular IoT hardware platform for distributed
and secured extreme edge computing." Electronics 9, no. 3 (2020): 538.
https://doi.org/10.3390/electronics9030538

[13] Mårtensson, Torvald, Daniel Ståhl, and Jan Bosch. "Test activities in the continuous integration and delivery
pipeline." Journal of Software: Evolution and Process 31, no. 4 (2019): e2153. https://doi.org/10.1002/smr.2153

[14] Khodos, Daniel R., David I. Adegbesan, Oliver Khairallah, and Shouling He. "Team Cleaning Robots." In 2018 ASEE
Annual Conference & Exposition. 2018.

[15] Castillo-Martínez, Diego Hilario, Adolfo Josué Rodríguez-Rodríguez, Adrian Soto, Alberto Berrueta, David Tomás
Vargas-Requena, Ignacio R. Matias, Pablo Sanchis, Alfredo Ursúa, and Wenceslao Eduardo Rodríguez-Rodríguez.
"Design and on-field validation of an embedded system for monitoring second-life electric vehicle lithium-ion
batteries." Sensors 22, no. 17 (2022): 6376. https://doi.org/10.3390/s22176376

[16] Ren, Xinguang, and Yongmin Cui. "Embedded system intelligent platform design based on digital multimedia artistic
design." Wireless Communications and Mobile Computing 2021, no. 1 (2021): 3959199.
https://doi.org/10.1155/2021/3959199

[17] Ibrahim, Bishar R., Farhad M. Khalifa, Subhi RM Zeebaree, Nashwan A. Othman, Ahmed Alkhayyat, Rizgar R. Zebari,
and Mohammed AM Sadeeq. "Embedded system for eye blink detection using machine learning technique."
In 2021 1st Babylon International Conference on Information Technology and Science (BICITS), pp. 58-62. IEEE, 2021.
https://doi.org/10.1109/BICITS51482.2021.9509908

[18] Kissich, Meinhard, Klaus Weinbauer, and Marcel Baunach. "ATTEST: Automated and Thorough Testing of
Embedded Software in Teaching." In Proceedings of the 5th European Conference on Software Engineering
Education, pp. 199-203. 2023. https://doi.org/10.1145/3593663.3593678

[19] Pham, Khang, Vu Nguyen, and Tien Nguyen. "Application of natural language processing towards autonomous
software testing." In Proceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering, pp. 1-4. 2022. https://doi.org/10.1145/3551349.3563241

[20] Foss, Kyle, Ivo Couckuyt, Adrian Baruta, and Corentin Mossoux. "Automated software defect detection and
identification in vehicular embedded systems." IEEE Transactions on Intelligent Transportation Systems 23, no. 7
(2021): 6963-6973. https://doi.org/10.1109/TITS.2021.3065940

[21] Strandberg, Per Erik. Automated system-level software testing of industrial networked embedded systems.
Malardalen University (Sweden), 2021.

https://doi.org/10.1007/s11276-021-02693-0
https://doi.org/10.1109/CoDIT49905.2020.9263910
https://doi.org/10.1177/0959651819870340
https://doi.org/10.1109/EuroSPW59978.2023.00012
https://doi.org/10.1109/ISSREW55968.2022.00050
https://doi.org/10.12962/j23373539.v11i3.99436
https://doi.org/10.1109/IMPACT55510.2022.10029149
https://doi.org/10.3390/electronics9030538
https://doi.org/10.1002/smr.2153
https://doi.org/10.3390/s22176376
https://doi.org/10.1155/2021/3959199
https://doi.org/10.1109/BICITS51482.2021.9509908
https://doi.org/10.1145/3593663.3593678
https://doi.org/10.1145/3551349.3563241
https://doi.org/10.1109/TITS.2021.3065940

Journal of Advanced Research in Computing and Applications
Volume 39, Issue 1 (2025) 146-163

163

[22] Xie, Xinqiang, Xiaochun Yang, Bin Wang, and Qiang He. "DevRec: Multi-relationship embedded software developer
recommendation." IEEE Transactions on Software Engineering 48, no. 11 (2021): 4357-4379.
https://doi.org/10.1109/TSE.2021.3117590

[23] Lemes, Marcelo JR, and Adriano Sarmento. "Qualifying People for Embedded Software Development and Data
Science: An Experience on University-Industry Cooperation." In Congresso Brasileiro de Software: Teoria e Prática
(CBSoft), pp. 1-4. SBC, 2022. https://doi.org/10.5753/cbsoft_estendido.2022.226175

[24] Cai, Jing. "Research on embedded software based on adaptive filtering algorithm." In 2022 IEEE International
Conference on Advances in Electrical Engineering and Computer Applications (AEECA), pp. 973-979. IEEE, 2022.
https://doi.org/10.1109/AEECA55500.2022.9918946

[25] Wang, Boxiang, Rui Chen, Chao Li, Tingting Yu, Dongdong Gao, and Mengfei Yang. "SpecChecker-ISA: a data sharing
analyzer for interrupt-driven embedded software." In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, pp. 801-804. 2022. https://doi.org/10.1145/3533767.3543295

[26] Zhang, Weiyan, Mehran Goli, and Rolf Drechsler. "Early performance estimation of embedded software on risc-v
processor using linear regression." In 2022 25th International Symposium on Design and Diagnostics of Electronic
Circuits and Systems (DDECS), pp. 20-25. IEEE, 2022. https://doi.org/10.1109/DDECS54261.2022.9770144

[27] Su, Zhuo, Dongyan Wang, Yixiao Yang, Yu Jiang, Wanli Chang, Liming Fang, Wen Li, and Jiaguang Sun. "Code
synthesis for dataflow-based embedded software design." IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 41, no. 1 (2021): 49-61. https://doi.org/10.1109/TCAD.2021.3055487

[28] Mittal, Rakshit, Dominique Blouin, and Soumyadip Bandyopadhyay. "PNPEq: Verification of Scheduled Conditional
Behavior in Embedded Software using Petri Nets." In 2021 28th Asia-Pacific Software Engineering Conference
(APSEC), pp. 509-514. IEEE, 2021. https://doi.org/10.1109/APSEC53868.2021.00059

[29] Mahdian, Navid, Seyed-Hosein Attarzadeh-Niaki, and Armin Salimi-Badr. "A systematic embedded software design
flow for robotic applications." In 2021 11th International Conference on Computer Engineering and Knowledge
(ICCKE), pp. 217-222. IEEE, 2021. https://doi.org/10.1109/ICCKE54056.2021.9721465

[30] Hierons, Robert M., and Tao Xie. "Adaptive or embedded software testing and mutation testing." Software Testing:
Verification & Reliability 31, no. 7 (2021). https://doi.org/10.1002/stvr.1798

[31] Liu, Yuchu, David Issa Mattos, Jan Bosch, Helena Holmström Olsson, and Jonn Lantz. "Bayesian propensity score
matching in automotive embedded software engineering." In 2021 28th Asia-Pacific Software Engineering
Conference (APSEC), pp. 233-242. IEEE, 2021. https://doi.org/10.1109/APSEC53868.2021.00031

[32] Liu, Yuchu, David Issa Mattos, Jan Bosch, Helena Holmström Olsson, and Jonn Lantz. "Size matters? Or not: A/B
testing with limited sample in automotive embedded software." In 2021 47th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pp. 300-307. IEEE, 2021.
https://doi.org/10.1109/SEAA53835.2021.00046

[33] Liu, Yuchu, Jan Bosch, Helena Holmström Olsson, and Jonn Lantz. "An architecture for enabling A/B experiments in
automotive embedded software." In 2021 IEEE 45th Annual Computers, Software, and Applications Conference
(COMPSAC), pp. 992-997. IEEE, 2021. https://doi.org/10.1109/COMPSAC51774.2021.00134

https://doi.org/10.1109/TSE.2021.3117590
https://doi.org/10.5753/cbsoft_estendido.2022.226175
https://doi.org/10.1109/AEECA55500.2022.9918946
https://doi.org/10.1145/3533767.3543295
https://doi.org/10.1109/DDECS54261.2022.9770144
https://doi.org/10.1109/TCAD.2021.3055487
https://doi.org/10.1109/APSEC53868.2021.00059
https://doi.org/10.1109/ICCKE54056.2021.9721465
https://doi.org/10.1002/stvr.1798
https://doi.org/10.1109/APSEC53868.2021.00031
https://doi.org/10.1109/SEAA53835.2021.00046
https://doi.org/10.1109/COMPSAC51774.2021.00134

