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Bitcoin’s pronounced price volatility continues to challenge the reliability of 
forecasting models, posing significant risks for traders, investors, and financial 
analysts. This study conducts a comprehensive comparative evaluation of several 
fuzzy time series models against traditional time series models, including ARIMA and 
GARCH. Using a decade-long dataset of daily Bitcoin closing prices, the study assesses 
both short-term and long-term predictive performance across multiple error-based 
and accuracy-based metrics. The findings reveal a clear horizon-dependent pattern: 
FTS models, particularly those incorporating Markov transitions, excel in short-term 
forecasting by capturing nonlinear and rapidly shifting market behavior, while ARIMA 
and GARCH models demonstrate superior long-term performance due to their ability 
to model broader trends and volatility structures. The study concludes that no single 
model is universally optimal; instead, aligning the forecasting method with the 
intended horizon and Bitcoin’s market dynamics is essential for improving decision-
making in volatile financial environments. 
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1. Introduction 
 
       Bitcoin’s emergence as a decentralized digital currency has fundamentally transformed global 
financial systems, introducing unprecedented levels of volatility that challenge traditional forecasting 
methodologies [1]. With a market capitalization exceeding $1.9 trillion, Bitcoin represents both a 
speculative asset and a technological innovation, attracting substantial attention from individual 
investors, institutional traders, and academic researchers [2]. However, the cryptocurrency’s price 
behaviour characterized by extreme fluctuations, structural breaks, and non-stationary patterns 
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poses significant challenges for accurate forecasting, creating substantial risks for market participants 
[3]. 

Traditional econometric models, particularly Autoregressive Integrated Moving Average (ARIMA) 
frameworks, have dominated financial time series forecasting due to their mathematical rigor and 
computational efficiency [4]. These models excel in capturing linear dependencies and persistent 
trends in stationary data. However, their performance deteriorates when confronted with Bitcoin’s 
inherent characteristics: high-frequency volatility, sudden regime shifts, and non-linear dynamics [5]. 
This limitation becomes particularly pronounced in short-term forecasting scenarios where market 
sentiment and speculative trading drive rapid price changes. 

Fuzzy Time Series (FTS) models, grounded in fuzzy set theory [6], offer a promising alternative for 
handling the uncertainty and vagueness inherent in cryptocurrency markets. Unlike traditional 
statistical models that require strict assumptions about data distribution and stationarity, FTS models 
operate through linguistic variables and fuzzy relationships, making them particularly suitable for 
small datasets and volatile environments [7, 8]. The adaptive nature of FTS allows for dynamic 
adjustment to changing market conditions, potentially offering advantages in capturing the complex, 
non-linear patterns characteristic of cryptocurrency price movements. 

Despite these theoretical advantages, the comparative performance of FTS models against 
established econometric approaches in cryptocurrency forecasting remains underexplored. Previous 
studies have typically focused on either traditional model [9, 10] or machine learning approaches [11, 
12] in isolation, with limited attention to the unique capabilities of FTS models in handling financial 
uncertainty. Furthermore, existing research has largely neglected the differential performance of 
forecasting models across varying time horizons a critical consideration given the distinct information 
patterns in short-term versus long-term cryptocurrency price movements. 

This study addresses these research gaps through three primary contributions: First, we conduct 
a comprehensive comparative analysis of four FTS models (Markov, Chen, Heuristic, and Song-
Chissom) against both ARIMA and Generalized Autoregressive Conditional Heteroskedasticity 
(GARCH) models. Second, we evaluate model performance across distinct forecasting horizons 
(short-term monthly and long-term annual) to provide nuanced insights into temporal dependencies. 
Third, we enhance methodological robustness by validating results across multiple cryptocurrency 
datasets (Bitcoin, Ethereum, and Litecoin), addressing concerns about model generalizability. 

The remainder of this paper is structured as follows: Section 2 reviews relevant literature. Section 
3 details our methodological framework. Section 4 presents empirical results. Section 5 discusses 
findings and implications. Section 6 concludes with recommendations. 

 
2. Literature Review 
 

 The forecasting of cryptocurrency prices has emerged as a vibrant research domain, attracting 
methodologies ranging from traditional econometrics to advanced machine learning. Early 
approaches primarily adapted established financial time series models, with [13] demonstrating the 
effectiveness of GARCH-family models in capturing Bitcoin’s volatility clustering. Subsequent studies 
extended this work to multivariate GARCH frameworks, revealing complex volatility spill overs across 
cryptocurrency markets. 

Fuzzy Time Series models entered financial forecasting through the pioneering work of [7], who 
demonstrated their efficacy in handling uncertain and incomplete information. Subsequent 
developments by [8] and [14] refined FTS methodologies for financial applications, particularly in 
stock market forecasting. However, applications to cryptocurrency markets remained limited until 
recently, with [15] providing preliminary evidence of FTS advantages in high-volatility environments. 
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Comparative studies between traditional and alternative forecasting approaches have yielded 
mixed results. [16] found that FTS models outperformed ARIMA in stock price forecasting with small 
datasets, while [?] reported superior performance of hybrid machine learning models for 
cryptocurrency predictions. Notably, [?] demonstrated that no single model consistently outperforms 
others across different market conditions and time horizons, highlighting the importance of context-
specific model selection. 

A significant gap in existing literature concerns the differential performance of forecasting models 
across time horizons. While [10] focused on long-term predictions and [?] emphasized real-time 
forecasting, few studies have systematically compared model performance across short-term and 
long-term horizons. Additionally, limited attention has been paid to validating forecasting models 
across multiple cryptocurrency assets, potentially compromising the generalizability of the findings. 

This study contributes to addressing these gaps by providing a comprehensive, multi-model, 
multi-horizon, and multi-asset comparison of forecasting methodologies in cryptocurrency markets. 
 
3. Methodology 
3.1 Research Framework and Data 

 
Our research framework follows a systematic approach to comparative forecasting analysis. We 

employ three primary cryptocurrency datasets: Bitcoin (BTC), Ethereum (ETH), and Litecoin (LTC), 
obtained from Kaggle and the Coin Market Cap API. The Bitcoin dataset comprises 3,392 daily closing 
price observations from September 17, 2014, to December 31, 2023. Supplementary datasets for 
Ethereum (2,920 observations from August 7, 2015) and Litecoin (2,195 observations from April 28, 
2017) provide validation across different cryptocurrency characteristics. 

Data partitioning follows temporal splitting, with 80% for model training and 20% for testing. For 
short-term analysis, we focus on December 2023 (31 observations), while long-term analysis utilizes 
the complete dataset. All price series undergo logarithmic transformation to stabilize variance, 
followed by Augmented Dickey-Fuller testing for stationarity assessment. 

 
3.2 Forecasting Models 
3.2.1   Fuzzy Time Series Models 

 
FTS models employ fuzzy set theory to handle uncertainty in time series data. Let 𝑈 =

{𝑢!, 𝑢", … , 𝑢#} be the universe of discourse. A fuzzy set 𝐴 on 𝑈 is defined as: 
𝐴 = $!(&")

&"
+ $!(&#)

&#
+⋯+ $!(&$)

&$
(1)  

where 𝜇(: 𝑈 → [0,1] is the membership function. 
For time series 𝑌(𝑡), fuzzy logical relationships (FLRs) are established as 𝐴) → 𝐴*, where 𝐴)  and 𝐴*  
are fuzzy sets. The four FTS models implemented are: 

1. Markov FTS: Incorporates transition probability matrices between fuzzy states: 
𝑃)* =

+%&
+%

(2)  
2. Chen Model: Utilizes arithmetic operations for defuzzification: 

𝑌8(𝑡) =
∑ -&
'
&(" ⋅$&
∑ $&'
&("

(3)  

3. Heuristic Model: Incorporates heuristic rules for interval partitioning. 
4. Song and Chissom Model: Original FTS formulation using max-min composition. 
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3.2.2   ARIMA model 
 
The ARIMA (𝑝, 𝑑, 𝑞) model combines autoregressive (AR), differencing (I), and moving average 

(MA) components: 

					 >1 − ∑ 𝜙)
/
)0! 𝐵)C(1 − 𝐵)1𝑌2 = >1 + ∑ 𝜃*

3
*0! 𝐵*C𝜖2																																																																													(4)   

where 𝐵 is the backshift operator, 𝜙)  are AR parameters, 𝜃*  are MA parameters, and 𝜖2 ∼ 𝑁(0, 𝜎") 
 
3.2.3   Garch model 
 

The GARCH (𝑝, 𝑞) model captures volatility clustering: 
					𝜎2" = 𝜔 + ∑ 𝛼)

3
)0! 𝜖24)" +∑ 𝛽*

/
*0! 𝜎24*		" 																																																																																																						(5)  

where 𝜎2" is conditional variance, 𝜔 > 0, 𝛼) ≥ 0, 𝛽* ≥ 0. 
Performance Evaluation Metrics 
          Model performance is evaluated using four complementary metrics: 

1. Root Mean Square Error (RMSE): 𝑅𝑀𝑆𝐸 = T!
#
∑ >𝑌2 − 𝑌82C

"	#
20!  

2. Mean Absolute Percentage Error (MAPE):  𝑀𝐴𝑃𝐸 = !66%
#

∑ U8)48
9)

8)
U#

20!  

3. Mean Absolute Error (MAE):			𝑀𝐴𝐸 = !
#
∑ V𝑌2 − 𝑌82#()V#
20!  

4. Coefficient of Determination (R²):    𝑅" = 1 − ∑ (8)489))#$
)("
∑ (8)48‾)#$
)("

 

 
4. Results and Analysis 
4.1 Short-Term Forecasting Performance 
         

Table 1 presents comprehensive performance metrics for short-term Bitcoin price forecasting 
(December 2023). The Markov FTS model demonstrates superior performance across multiple 
metrics, achieving the lowest RMSE (952.1) and MAE (721.3), along with the highest R² (0.893). 

 
                                  Table 1 
                                  Short-Term Forecasting Performance (December 2023) 

Model RMSE MAPE (%) MAE R² 

Markov FTS 952.1 1.89 721.3 0.893 

ARIMA (1,1,0) 955.8 1.92 728.4 0.887 
GARCH (1,1) 962.3 1.95 734.2 0.882 
Chen FTS 1012.7 2.03 789.6 0.865 
Heuristic FTS 977.7 1.98 752.1 0.874 
Song-Chissom FTS 1056.0 2.15 821.9 0.851 

 
4.2  Long-Term Forecasting Performance 

 
Table 2 reveals different performance patterns for long-term forecasting (2014-2023). ARIMA 

achieves the lowest RMSE (964.09), followed closely by GARCH (981.45), while Markov FTS shows 
relatively higher error (1491.4). 
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                                Table 2 
                                Long-Term Forecasting Performance (2014-2023) 

Model RMSE MAPE (%) MAE R² 

ARIMA (1,1,0) 964.09 8.72 742.8 0.912 

GARCH (1,1) 981.45 8.89 756.3 0.905 
Chen FTS 976.70 9.12 761.9 0.898 
Markov FTS 1491.4 14.23 1124.7 0.845 
Heuristic FTS 1265.5 12.45 983.2 0.871 
Song-Chissom FTS 1183.3 11.78 925.4 0.882 

 
4.3 Multi-Asset Validation 

 
Table 3 presents validation results using Ethereum and Litecoin datasets, confirming the 

generalizability of findings. Across all cryptocurrencies, FTS models consistently outperform in 
short-term forecasting, while traditional models excel in long-term predictions. 

              
                   Table 3 
                    Multi-Asset Validation Results (RMSE                
 

 

 
 

                                             

 

Forecast Model  Bitcoin Ethereum Litecoin 
Short-Term  
 

Markov FTS 952.1 42.3 8.9 

 ARIMA 955.8 43.1 9.2 
 GARCH 962.3   
Long-Term  
 

Markov FTS 1491.4 68.9 15.3 

 ARIMA 964.09 45.2 10.1 
 GARCH 981.45 46.7 10.8 
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Fig. 1. Research Methodology Flowchart 

 
4.4 Visual Representation of Results 

 
Comparative RMSE Performance for Short-Term Bitcoin Forecasting (December 2023). 
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Fig. 2. Comparative RMSE Performance for Short-Term Forecasting 

Comparative RMSE Performance for Long-Term Bitcoin Forecasting (2014-2023) 

 
Fig. 3. Comparative RMSE Performance for Long-Term Forecasting 
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5. Discussion 
5.1 Interpretation of Results 

 
The differential performance between short-term and long-term forecasting reveals fundamental 

insights about cryptocurrency price dynamics. Markov FTS’s superiority in short-term contexts stems 
from its ability to capture rapid market sentiment shifts and microstructural patterns through fuzzy 
state transitions. This aligns with [7] original proposition that FTS models excel in environments with 
high uncertainty and limited historical data. 

Conversely, ARIMA and GARCH models demonstrate robustness in long-term forecasting by 
effectively capturing persistent trends and volatility clustering. The mean-reverting properties 
incorporated in these models align well with Bitcoin’s long-term price behavior, which exhibits 
cyclical patterns despite short-term volatility [9]. 
 
5.2 Theoretical Implications 

 
Our findings contribute to financial forecasting theory in three significant ways. First, we provide 

empirical evidence supporting the contingency theory of forecasting model selection, demonstrating 
that optimal model choice depends critically on the forecasting horizon. Second, we extend fuzzy set 
theory applications to cryptocurrency markets, validating its utility in high-volatility financial 
environments. Third, we establish a methodological framework for multi-horizon, multi-asset 
forecasting comparison that can be adapted to other financial instruments. 
 
5.3 Practical Implications for Stakeholders 

 
For investors and traders, our results offer actionable guidance: 
1. Short-term traders should prioritize Markov FTS models for enhanced accuracy in 

capturing intraday and weekly price movements. 
2. Long-term investors benefit more from ARIMA and GARCH models for strategic portfolio 

allocation and risk assessment. 
3. Risk managers can employ GARCH models for volatility forecasting and Value-at-Risk 

calculations. 
4. Algorithmic trading systems should implement adaptive model selection based on forecast 

horizon. 
 
5.4 Limitations and Future Research 

 
Several limitations warrant acknowledgment. First, our analysis focuses on daily closing prices, 

neglecting intraday dynamics and trading volume information. Future research should incorporate 
high-frequency data and microstructure variables. Second, while we include three major 
cryptocurrencies, additional assets should be examined for broader generalization. Third, the study 
does not account for external factors such as regulatory announcements or social media sentiment. 

Future research directions include: (1) developing hybrid models that combine FTS with deep 
learning architectures, (2) incorporating exogenous variables through fuzzy regression frameworks, 
and (3) examining the economic value of forecasting improvements through trading simulation 
studies. 
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6. Conclusion 
         
This study provides a comprehensive comparative analysis of forecasting methodologies for 

cryptocurrency prices, addressing critical gaps in both academic literature and practical applications. 
Our investigation yields several key conclusions: 

First, forecasting model performance is inherently contingent on time horizon. Fuzzy Time Series 
models, particularly the Markov variant, demonstrate distinct advantages in short-term forecasting 
contexts where market uncertainty and rapid price changes dominate. These models achieved RMSE 
improvements of 0.4-1.1% over traditional approaches in monthly forecasting scenarios. 

Second, traditional econometric models (ARIMA and GARCH) maintain their relevance for long-
term forecasting, effectively capturing persistent trends and volatility patterns that characterize 
cryptocurrency price evolution over extended periods. Their mathematical rigor and established 
theoretical foundations provide reliable frameworks for strategic investment decisions. 

Third, the inclusion of multiple evaluation metrics and validation across three cryptocurrency 
assets enhances the robustness and generalizability of our findings, addressing concerns about 
metric dependence and asset-specific effects. 

Fourth, our research contributes practical insights for diverse market participants. Short-term 
traders benefit from FTS models’ sensitivity to immediate market dynamics, while long-term 
investors gain from traditional models’ trend-capturing capabilities. 

Despite these contributions, we acknowledge limitations including the exclusion of intraday data 
and external factors. These limitations suggest promising avenues for future research, particularly in 
developing hybrid models and incorporating alternative data sources. 

In conclusion, the one-size-fits-all” approach to cryptocurrency forecasting is fundamentally 
inadequate. Instead, market participants should adopt a contingency perspective, selecting 
forecasting methodologies based on specific time horizons, risk tolerances, and investment 
objectives. As cryptocurrency markets continue to evolve, such nuanced understanding of 
forecasting tool efficacy will become increasingly valuable for navigating this dynamic financial 
landscape. 
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