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Complex processes like adsorption in fixed-bed columns can now be optimized thanks 
to the application of machine learning (ML) and deep learning (DL) in chemical 
engineering.  One of the most important metrics for assessing adsorption performance 
in packed bed columns is breakthrough curve analysis.  However, predicting 
breakthrough curve is not an easy task due to high complexity between the adsorbate 
and desorbent interactions. Different adsorption system requires different ML 
algorithm types with distinct configurations and hyperparameters. Hence, this article 
discusses the performance of various artificial neural networks (ANNs) architectures 
and hyperparameters in predicting breakthrough curves from various published 
literatures. We also evaluate ANNs configurations, optimization approaches, and 
performance metrics against traditional techniques and other machine learning 
algorithms, such as Random Forest, XGBoost, and Support Vector Machines.  Our 
review demonstrates how ANNs may capture nonlinear correlations between 
breakthrough curve factors and adsorption performances. The comparison results 
highlight that ANNs enhance prediction accuracy and adaptability, establishing it as an 
essential instrument for dynamic process simulation and optimization. Unlike previous 
reviews, this work uniquely consolidates and analyzes trends in ANN configurations 
and hyperparameter effects across diverse adsorption systems, providing new insights 
into best practices for data-driven adsorption modelling. The findings encourage a 
wider use of machine learning in process engineering applications and advance data-
driven modelling techniques in adsorption science. 

 
Keywords: 

Machine learning; artificial neural 
network; adsorption; breakthrough 
curve; separation 

 

1. Introduction 
 
Machine learning (ML) and deep learning (DL) have transformed data-driven problem solving 

across scientific and industrial domains. With increasing data availability and computational power, 

ML models can now identify complex patterns between inputs and outputs, providing predictive and 

analytical capabilities that were previously challenging [1] ML simulates human learning behavior, 
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enabling systems to extract knowledge and improve performance iteratively [2]. Consequently, any 

improvements made in the field of machine learning would improve computer capabilities and 

thereby affect technological advancement [3]. Many ML algorithms have been used in recent years 

to help with challenging tasks in industries due to its ability to capture complex pattern in high 

dimension datasets [4]. One key application is in adsorption, where breakthrough curve (BTC) 

analysis measures adsorption performance in fixed-bed systems. Predicting BTCs is challenging due 

to the intricate interactions between adsorbate and adsorbent. Numerous parameters such as flow 

rate, concentration, and bed height influence the adsorption process, requiring models capable of 

capturing nonlinear dependencies. This paper reviews literature on the influence of ANN 

configurations and hyperparameters on BTC prediction and compares the performance of ANN and 

other ML models in adsorption studies. 

 
2. Fundamentals of Adsorption and Breakthrough Curve  

 
Adsorption is defined as an increasing concentration of a particular substance at the surface of 

the interface between two phases. These particular substances transition between phases and then 

adhering to a surface.  It is regarded as a complicated phenomenon that mostly depends on specific 

adsorbate and the surface chemistry or nature of the adsorbent, as well as the system circumstances 

between the two phases in a bulk of fluid. This process is preferably being analyzed in a cylinder 

container called fixed-bed column due to its simple design and relatively inexpensive [5]. In this 

configuration, a solution feed that contain the compound that is needed to adsorb will be flowed 

through the fixed-bed column filled with adsorbent. At the end of the column, the concentration of 

the adsorbate will be measured hence the graph for the breakthrough curve of the current adsorbate 

can be plotted for further analysis [6]. Depending on the type of the adsorbate and adsorbent 

interactions, the shape of the graph will be different. Additionally, several variables including bed 

height, adsorbate concentration, flow rate, particle size, temperature, pH and other factors are 

assessed in order to evaluate adsorption performance such as breakthrough time, exhaust time, 

length of mass transfer zone (MTZ) and column maximum capacity. Due to various number of 

features and response variables to assess the performance of the adsorption phenomena, ML and/or 

DL have been common options for researchers to predict the breakthrough curve since it can capture 

the complex pattern between the input features and output parameters without understanding the 

phenomena. Fig. 1 shows the typical shape of breakthrough curve graph. 
 

 
Fig. 1. Illustration of typical breakthrough curve 
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3. Understanding Artificial Neural Network 
 

Artificial Neural Networks (ANNs) mimic the human brain’s processing by using interconnected 

layers of neurons that learn from data [7]. In supervised learning, ANN learn from large datasets by 

identifying relationships between input and output variables [8]. Activation functions determine how 

signals move between layers, while training algorithms such as backpropagation and Levenberg–

Marquardt help the network minimize prediction errors and improve accuracy [9]. 

Before training, ANNs require setting hyperparameters like the number of layers, neurons, 

learning rate, and activation functions [10]. Selecting these properly affects model performance and 

helps avoid overfitting or underfitting [11]. Automated optimization methods are being developed 

to streamline hyperparameter tuning [12]. ANNs can model nonlinear, complex systems that 

traditional mathematical models cannot easily capture [13]. They are flexible, adaptive, and capable 

of handling noisy or incomplete data [14]. Their strengths include real-time learning, fault tolerance, 

and the ability to generalize patterns across different datasets [15]. 

 

4. Applications of Artificial Neural Network in Breakthrough Curve Study 
 

ANNs have become an important tool in predicting and optimizing adsorption processes due to 

their ability to model nonlinear relationships. Traditional models often fail to capture the complexity 

of adsorption dynamics, while ANNs can learn these patterns from experimental or simulated data. 

Several studies confirm ANN’s superior predictive ability. Atta [16] achieved R² = 0.999 for 

tetracycline adsorption on rice husk. Schio et al., [17]  reported better accuracy of ANN than response 

surface methodology (RSM) for FD&C Red 40 dye adsorption. Das and Mishra [18] found that 

optimizing hidden neurons improved iron ion adsorption prediction. Gupta and Kumar [19]  

demonstrated higher R² (0.99907) for xylene vapor adsorption using ANN compared to RSM. 

Further applications include variable ranking and sensitivity analysis. Dalhat et al., [20] found 

concentration and flow rate to be dominant factors in phenol and ortho-cresol adsorption. Yusuf et 
al., [21] applied ANN to copper and manganese adsorption and confirmed its ability to generalize 

across multi-variable systems. Chittoo and Sutherland [22] showed that ANN predicted full BTCs 

better than ANFIS for phosphate adsorption.  

Collectively, these studies highlight that ANNs consistently outperform traditional statistical and 

mechanistic models in modelling adsorption processes due to their ability to capture nonlinear, 

multidimensional relationships without prior assumptions about system behaviour. Most successful 

models used feed-forward backpropagation networks with nonlinear activation functions (such as 

sigmoid, hyperbolic tangent, or logsig) in the hidden layers and linear functions in the output layer, 

which are well-suited for regression-based prediction tasks like breakthrough curve fitting. The use 

of training algorithms such as Levenberg–Marquardt backpropagation further improved convergence 

speed and model accuracy. Moreover, appropriate dataset partitioning—typically 70% for training, 

15% for validation, and 15% for testing—was found to enhance generalization and prevent 

overfitting. 

In summary, the reviewed literature establishes ANN as a powerful, reliable, and adaptable tool 

for adsorption modelling and breakthrough curve prediction. It not only delivers highly accurate 

performance metrics (often with R² values exceeding 0.99) but also provides flexibility in 

incorporating multiple variables, performing sensitivity analyses, and guiding process optimization. 

The findings indicate a growing trend toward using hybrid or optimized ANN models combined with 

other algorithms such as response surface methodology, adaptive neuro-fuzzy systems, and 

evolutionary optimization techniques. This progression points to a future where ANN-based models 
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will play a central role in digitalizing adsorption science, enabling faster process design, real-time 

simulation, and intelligent optimization in chemical and environmental engineering applications. 

 

5. Discussions on the Trends and Insights on the Configurations, Hyperparameters, and Their 
Implications in ANN Applications for Adsorption Breakthrough Curve 
 

Datasets Variations. Analysis of ANN configurations reveals notable trends as presented in Table 

1. The range in dataset sizes, from as few as 10 data points to over 1,200, is among the most obvious 

findings. While there is no true analytical method on how many datasets generations are desirable 

for each of the adsorption system, it is desirable to train the datasets by a little and increase its 

number until the model achieves adequate accuracy. Additionally, despite this big variance in the 

dataset’s requirement, most researches use a training, validation, and testing split of roughly 

70:15:15 or 70:10:20, which is consistent with supervised learning best practices to guarantee strong 

generalization and efficient model training. However, some researches either leave the data 

partitioning unclear or did not provide the datasets split (e.g., Sutherland, 2020). These omissions 

restrict the interpretability of stated model performance and hinder reproducibility. 

ANN Architectures. Most research use relatively simple to moderately complicated architecture, 

usually consisting of one to three hidden layers, when it comes to ANN design. Neuron counts vary 

greatly between layers, with common configurations being 1-1-1-1, 3-10-1, 5-5-1, and 4-30-1. It is 

clear that when the model is properly suited to the problem and dataset size, ideal predictive 

performance can be attained even with moderate architectural complexity. For example, using only 

96 data points and a 3-6-6-6-1 structure, Gupta and Kumar (2021) found an R2 value of 0.99007, 

suggesting that careful model design and data handling are just as important for performance as 

network depth. 

Activation Functions in Hidden and Output Layers. The selection of activation functions also 

follows standard ANN modelling approaches. The sigmoid, hyperbolic tangent (tanh), and their 

variations (such as logsig) are the most used hidden layer activation functions because of their ability 

to simulate the nonlinear relationships that are typical for adsorption processes. The output layer 

uses a linear activation function in almost every system, which is suitable for regression applications 

like breakthrough curve prediction. The suitability of ANN for producing continuous value predictions 

in this case is further supported by the regular use of linear output activations. While most of the 

ANNs rely on the common activation functions (sigmoid, linear), it is recommended to try other types 

as well since they might give higher accuracy with faster converge time and simpler ANN 

architectures. 

Performance Metrics of ANNs. The ability of ANNs to provide incredibly precise representations 

of breakthrough behaviour is demonstrated by the model's performance as determined by statistical 

metrics like the coefficient of determination (R2), mean squared error (MSE), and root mean squared 

error (RMSE). R2 values above 0.99, which indicate excellent model fit, are reported in most numbers 

of study. As evidence of the reliability of ANN models when set up correctly, Atta [16] and Schio et 
al., [17], exhibit high R2 values with corresponding low error terms. Some models, however, perform 

comparatively worse. For example, Chittoo and Sutherland's [22] model produced an R2 of 1.0 but an 

RMSE of 1.5628 and an MSE of 2.4423. This discrepancy could be the result of inconsistent feature 

selection and data preprocessing, overfitting, or a less-than-ideal design. These results highlight how 

important architecture tuning and dataset quality are to producing precise and useful predictions. It 

is also worth noting that when evaluating the performance of neural network model, do not rely only 

on one metrics. It is better to use more than one metrics such as R2 combines with MSE and RMSE to 

confirm that the model is not overfitting (memorize the training datasets) or inconsistent.  
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In summary, ANNs remain effective for BTC prediction, even with limited data, provided 

architectures and hyperparameters are properly chosen. The trend is shifting toward hybrid ANN 

models and automated optimization using genetic or Bayesian algorithms to enhance generalization. 

Future research should prioritize multicomponent systems, larger datasets, and digital twin 

integration to enable real-time simulation and optimization. 

 

6. Comparison between Different ML Algorithms on Adsorption Study 
 

In recent years, a wide range of machine learning (ML) algorithms—such as Decision Trees, 

Random Forests, XGBoost, Support Vector Machines (SVM), and Artificial Neural Networks (ANNs)—

have been applied to adsorption studies. Each algorithm offers distinct advantages, making the 

selection of the most suitable model dependent on the nature of the dataset and the prediction 

goals. Researchers have compared these algorithms to determine which performs best in modelling 

breakthrough curves and optimizing adsorption processes. 

Halalsheh et al., [23] explored boosted regression tree techniques, including AdaBoost, Gradient 

Boosting, XGBoost, LightGBM, and CatBoost, for modelling selenite adsorption on modified zeolite. 

Among them, CatBoost showed the highest accuracy, with the best agreement between predicted 

and experimental breakthrough data [23]. Kwon et al., [24] tested several ML algorithms which are 

Decision Tree, Random Forest, XGBoost, Ridge, and SVM variants to predict the location and mass of 

river contaminant spills using breakthrough curve data. Their findings revealed that Random Forest 

provided the most accurate and cost-effective results, while XGBoost demonstrated stronger field 

applicability [24]. 

In another study, Zhang et al., [25] applied the Least Squares Support Vector Machine (LSSVM) to 

predict gas-side mass transfer coefficients in CO₂ absorption systems. The LSSVM model with a radial 

basis function (RBF) kernel achieved better prediction accuracy than traditional ANN and regression 

models, proving its effectiveness for complex gas absorption problems [25]. Similarly, Aftab et al., 
[26] compared multilinear regression (MLR), Support Vector Regression (SVR), and ANN for predicting 

heavy metal adsorption. Both ANN and SVR models showed excellent predictive accuracy (R² > 0.99), 

but SVR slightly outperformed ANN in terms of lower error values and better generalization on test 

data [26]. 

Lastly, Yao et al., [27] compared Random Forest and Deep Neural Network (DNN) models to 

predict the purity of products in simulated moving bed (SMB) separation processes. Both models 

achieved very low prediction errors, but the DNN model demonstrated higher optimization ability, 

successfully identifying improved process conditions beyond the training data range [27]. 

Overall, these studies indicate that while ANNs and SVR remain top performers for adsorption 

modelling, tree-based ensemble methods like Random Forest and XGBoost are equally powerful for 

specific applications due to their robustness and interpretability. The choice of algorithm ultimately 

depends on the problem complexity, data volume, and need for optimization. Importantly, deep 

learning models such as DNNs are showing growing potential, offering faster simulation speeds and 

the ability to generalize to new operating conditions, making them highly valuable for future process 

modelling and real-time optimization in adsorption systems. 

 

7. Conclusion 
 

The use of machine learning in modelling and optimizing the adsorptive separation process 

is covered. A compilations recent published papers examined how ANN can perform better in a 

variety of adsorption systems than conventional statistical and mechanistic models. To achieve high 
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accuracy in predicting results output, ANN models have successfully integrated parameters including 

pH, bed height, influent flow rate, and initial concentration. ANNs have demonstrated better 

prediction outcomes than other methods in numerous instances. The other alternative ML models 

covered in this work include support vector machines, XGBoost, random forests, and decision trees. 

ANN provides far more precise and reliable predictions for the design and optimization of adsorption 

separative processes, even though these models have some advantages. Future research might be 

implementing ML hybrid model could lead to a more effective and economical method as much more 

different ML algorithms will be created in the future. 
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Table 1  
Summary of optimized ANN configurations from literatures 

 
 

Name of Authors Number of datasets (training, 
validation, test) 

ANN 
configuration 

Hidden layer activation 
function 

Output layer activation 
functions 

Model Performance 
metrics 

Atta (2024) Not specified (70,15,15%) 1-1-1-1 Sigmoid Linear R2(0.999) 

Schio, Salau, Mallmann and 
Dotto (2021) 

252 
(70,15,15%) 3-10-1 Hyperbolic tangent 

sigmoid Linear 
R2(0.99) 
SSE(0.0459) 
MSE(0.000186) 

Das and Mishra (2021) 185 
(70,15,15%) 

1-13-3 
1-10-3 
1-7-3 

Not specified Not specified R2(0.99) 
MSE(0.000209) 

Gupta and Kumar (2021) 96 
(79.12,10.42.10.42%) 3-6-6-6-1 Sigmoidal Linear R2(0.99907) 

Dalhat,  Mu'Azu, Essa (2021) 100 
(70,15,15%) 5-5-1 Sigmoidal Linear R2(0.988) 

RMSE(0.0472) 

Yusuf, Song, Li (2020) 1000 
(not specified) 4-10-1 Tanh Tanh R2(0.998) 

Chittoo and Sutherland (2020) 562 
(70,no validation,30%) 3-13-2 Tansig Tansig 

R2(1.0) 
RSME(1.5628) 
MSE(2.4423) 


