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breakthrough curve is not an easy task due to high complexity between the adsorbate
and desorbent interactions. Different adsorption system requires different ML
algorithm types with distinct configurations and hyperparameters. Hence, this article
discusses the performance of various artificial neural networks (ANNs) architectures
and hyperparameters in predicting breakthrough curves from various published
literatures. We also evaluate ANNs configurations, optimization approaches, and
performance metrics against traditional techniques and other machine learning
algorithms, such as Random Forest, XGBoost, and Support Vector Machines. Our
review demonstrates how ANNs may capture nonlinear correlations between
breakthrough curve factors and adsorption performances. The comparison results
highlight that ANNs enhance prediction accuracy and adaptability, establishing it as an
essential instrument for dynamic process simulation and optimization. Unlike previous
reviews, this work uniquely consolidates and analyzes trends in ANN configurations

Keywords:

and hyperparameter effects across diverse adsorption systems, providing new insights
Machine learning; artificial neural into best practices for data-driven adsorption modelling. The findings encourage a
network; adsorption; breakthrough wider use of machine learning in process engineering applications and advance data-
curve; separation driven modelling techniques in adsorption science.

1. Introduction

Machine learning (ML) and deep learning (DL) have transformed data-driven problem solving
across scientific and industrial domains. With increasing data availability and computational power,
ML models can now identify complex patterns between inputs and outputs, providing predictive and
analytical capabilities that were previously challenging [1] ML simulates human learning behavior,

* Corresponding author.
E-mail address: zykamilia@ums.edu.my

69


https://karyailham.com.my/index.php/arca

Journal of Advanced Research in Computing and Applications
Volume 42, Issue 1 (2026) 69-76

enabling systems to extract knowledge and improve performance iteratively [2]. Consequently, any
improvements made in the field of machine learning would improve computer capabilities and
thereby affect technological advancement [3]. Many ML algorithms have been used in recent years
to help with challenging tasks in industries due to its ability to capture complex pattern in high
dimension datasets [4]. One key application is in adsorption, where breakthrough curve (BTC)
analysis measures adsorption performance in fixed-bed systems. Predicting BTCs is challenging due
to the intricate interactions between adsorbate and adsorbent. Numerous parameters such as flow
rate, concentration, and bed height influence the adsorption process, requiring models capable of
capturing nonlinear dependencies. This paper reviews literature on the influence of ANN
configurations and hyperparameters on BTC prediction and compares the performance of ANN and

other ML models in adsorption studies.
2. Fundamentals of Adsorption and Breakthrough Curve

Adsorption is defined as an increasing concentration of a particular substance at the surface of
the interface between two phases. These particular substances transition between phases and then
adhering to a surface. It is regarded as a complicated phenomenon that mostly depends on specific
adsorbate and the surface chemistry or nature of the adsorbent, as well as the system circumstances
between the two phases in a bulk of fluid. This process is preferably being analyzed in a cylinder
container called fixed-bed column due to its simple design and relatively inexpensive [5]. In this
configuration, a solution feed that contain the compound that is needed to adsorb will be flowed
through the fixed-bed column filled with adsorbent. At the end of the column, the concentration of
the adsorbate will be measured hence the graph for the breakthrough curve of the current adsorbate
can be plotted for further analysis [6]. Depending on the type of the adsorbate and adsorbent
interactions, the shape of the graph will be different. Additionally, several variables including bed
height, adsorbate concentration, flow rate, particle size, temperature, pH and other factors are
assessed in order to evaluate adsorption performance such as breakthrough time, exhaust time,
length of mass transfer zone (MTZ) and column maximum capacity. Due to various number of
features and response variables to assess the performance of the adsorption phenomena, ML and/or
DL have been common options for researchers to predict the breakthrough curve since it can capture
the complex pattern between the input features and output parameters without understanding the
phenomena. Fig. 1 shows the typical shape of breakthrough curve graph.
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Fig. 1. lllustration of typical breakthrough curve
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3. Understanding Artificial Neural Network

Artificial Neural Networks (ANNs) mimic the human brain’s processing by using interconnected
layers of neurons that learn from data [7]. In supervised learning, ANN learn from large datasets by
identifying relationships between input and output variables [8]. Activation functions determine how
signals move between layers, while training algorithms such as backpropagation and Levenberg—
Marquardt help the network minimize prediction errors and improve accuracy [9].

Before training, ANNs require setting hyperparameters like the number of layers, neurons,
learning rate, and activation functions [10]. Selecting these properly affects model performance and
helps avoid overfitting or underfitting [11]. Automated optimization methods are being developed
to streamline hyperparameter tuning [12]. ANNs can model nonlinear, complex systems that
traditional mathematical models cannot easily capture [13]. They are flexible, adaptive, and capable
of handling noisy or incomplete data [14]. Their strengths include real-time learning, fault tolerance,
and the ability to generalize patterns across different datasets [15].

4. Applications of Artificial Neural Network in Breakthrough Curve Study

ANNSs have become an important tool in predicting and optimizing adsorption processes due to
their ability to model nonlinear relationships. Traditional models often fail to capture the complexity
of adsorption dynamics, while ANNs can learn these patterns from experimental or simulated data.
Several studies confirm ANN’s superior predictive ability. Atta [16] achieved R? = 0.999 for
tetracycline adsorption on rice husk. Schio et al., [17] reported better accuracy of ANN than response
surface methodology (RSM) for FD&C Red 40 dye adsorption. Das and Mishra [18] found that
optimizing hidden neurons improved iron ion adsorption prediction. Gupta and Kumar [19]
demonstrated higher R? (0.99907) for xylene vapor adsorption using ANN compared to RSM.

Further applications include variable ranking and sensitivity analysis. Dalhat et al., [20] found
concentration and flow rate to be dominant factors in phenol and ortho-cresol adsorption. Yusuf et
al., [21] applied ANN to copper and manganese adsorption and confirmed its ability to generalize
across multi-variable systems. Chittoo and Sutherland [22] showed that ANN predicted full BTCs
better than ANFIS for phosphate adsorption.

Collectively, these studies highlight that ANNs consistently outperform traditional statistical and
mechanistic models in modelling adsorption processes due to their ability to capture nonlinear,
multidimensional relationships without prior assumptions about system behaviour. Most successful
models used feed-forward backpropagation networks with nonlinear activation functions (such as
sigmoid, hyperbolic tangent, or logsig) in the hidden layers and linear functions in the output layer,
which are well-suited for regression-based prediction tasks like breakthrough curve fitting. The use
of training algorithms such as Levenberg—Marquardt backpropagation further improved convergence
speed and model accuracy. Moreover, appropriate dataset partitioning—typically 70% for training,
15% for validation, and 15% for testing—was found to enhance generalization and prevent
overfitting.

In summary, the reviewed literature establishes ANN as a powerful, reliable, and adaptable tool
for adsorption modelling and breakthrough curve prediction. It not only delivers highly accurate
performance metrics (often with R? values exceeding 0.99) but also provides flexibility in
incorporating multiple variables, performing sensitivity analyses, and guiding process optimization.
The findings indicate a growing trend toward using hybrid or optimized ANN models combined with
other algorithms such as response surface methodology, adaptive neuro-fuzzy systems, and
evolutionary optimization techniques. This progression points to a future where ANN-based models
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will play a central role in digitalizing adsorption science, enabling faster process design, real-time
simulation, and intelligent optimization in chemical and environmental engineering applications.

5. Discussions on the Trends and Insights on the Configurations, Hyperparameters, and Their
Implications in ANN Applications for Adsorption Breakthrough Curve

Datasets Variations. Analysis of ANN configurations reveals notable trends as presented in Table
1. The range in dataset sizes, from as few as 10 data points to over 1,200, is among the most obvious
findings. While there is no true analytical method on how many datasets generations are desirable
for each of the adsorption system, it is desirable to train the datasets by a little and increase its
number until the model achieves adequate accuracy. Additionally, despite this big variance in the
dataset’s requirement, most researches use a training, validation, and testing split of roughly
70:15:15 or 70:10:20, which is consistent with supervised learning best practices to guarantee strong
generalization and efficient model training. However, some researches either leave the data
partitioning unclear or did not provide the datasets split (e.g., Sutherland, 2020). These omissions
restrict the interpretability of stated model performance and hinder reproducibility.

ANN Architectures. Most research use relatively simple to moderately complicated architecture,
usually consisting of one to three hidden layers, when it comes to ANN design. Neuron counts vary
greatly between layers, with common configurations being 1-1-1-1, 3-10-1, 5-5-1, and 4-30-1. It is
clear that when the model is properly suited to the problem and dataset size, ideal predictive
performance can be attained even with moderate architectural complexity. For example, using only
96 data points and a 3-6-6-6-1 structure, Gupta and Kumar (2021) found an R? value of 0.99007,
suggesting that careful model design and data handling are just as important for performance as
network depth.

Activation Functions in Hidden and Output Layers. The selection of activation functions also
follows standard ANN modelling approaches. The sigmoid, hyperbolic tangent (tanh), and their
variations (such as logsig) are the most used hidden layer activation functions because of their ability
to simulate the nonlinear relationships that are typical for adsorption processes. The output layer
uses a linear activation function in almost every system, which is suitable for regression applications
like breakthrough curve prediction. The suitability of ANN for producing continuous value predictions
in this case is further supported by the regular use of linear output activations. While most of the
ANNs rely on the common activation functions (sigmoid, linear), it is recommended to try other types
as well since they might give higher accuracy with faster converge time and simpler ANN
architectures.

Performance Metrics of ANNs. The ability of ANNs to provide incredibly precise representations
of breakthrough behaviour is demonstrated by the model's performance as determined by statistical
metrics like the coefficient of determination (R?), mean squared error (MSE), and root mean squared
error (RMSE). R? values above 0.99, which indicate excellent model fit, are reported in most numbers
of study. As evidence of the reliability of ANN models when set up correctly, Atta [16] and Schio et
al., [17], exhibit high R?values with corresponding low error terms. Some models, however, perform
comparatively worse. For example, Chittoo and Sutherland's [22] model produced an R? of 1.0 but an
RMSE of 1.5628 and an MSE of 2.4423. This discrepancy could be the result of inconsistent feature
selection and data preprocessing, overfitting, or a less-than-ideal design. These results highlight how
important architecture tuning and dataset quality are to producing precise and useful predictions. It
is also worth noting that when evaluating the performance of neural network model, do not rely only
on one metrics. It is better to use more than one metrics such as R? combines with MSE and RMSE to
confirm that the model is not overfitting (memorize the training datasets) or inconsistent.
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In summary, ANNs remain effective for BTC prediction, even with limited data, provided
architectures and hyperparameters are properly chosen. The trend is shifting toward hybrid ANN
models and automated optimization using genetic or Bayesian algorithms to enhance generalization.
Future research should prioritize multicomponent systems, larger datasets, and digital twin
integration to enable real-time simulation and optimization.

6. Comparison between Different ML Algorithms on Adsorption Study

In recent years, a wide range of machine learning (ML) algorithms—such as Decision Trees,
Random Forests, XGBoost, Support Vector Machines (SVM), and Artificial Neural Networks (ANNs)—
have been applied to adsorption studies. Each algorithm offers distinct advantages, making the
selection of the most suitable model dependent on the nature of the dataset and the prediction
goals. Researchers have compared these algorithms to determine which performs best in modelling
breakthrough curves and optimizing adsorption processes.

Halalsheh et al., [23] explored boosted regression tree techniques, including AdaBoost, Gradient
Boosting, XGBoost, LightGBM, and CatBoost, for modelling selenite adsorption on modified zeolite.
Among them, CatBoost showed the highest accuracy, with the best agreement between predicted
and experimental breakthrough data [23]. Kwon et al., [24] tested several ML algorithms which are
Decision Tree, Random Forest, XGBoost, Ridge, and SVM variants to predict the location and mass of
river contaminant spills using breakthrough curve data. Their findings revealed that Random Forest
provided the most accurate and cost-effective results, while XGBoost demonstrated stronger field
applicability [24].

In another study, Zhang et al., [25] applied the Least Squares Support Vector Machine (LSSVM) to
predict gas-side mass transfer coefficients in CO, absorption systems. The LSSVM model with a radial
basis function (RBF) kernel achieved better prediction accuracy than traditional ANN and regression
models, proving its effectiveness for complex gas absorption problems [25]. Similarly, Aftab et al.,
[26] compared multilinear regression (MLR), Support Vector Regression (SVR), and ANN for predicting
heavy metal adsorption. Both ANN and SVR models showed excellent predictive accuracy (R?>0.99),
but SVR slightly outperformed ANN in terms of lower error values and better generalization on test
data [26].

Lastly, Yao et al., [27] compared Random Forest and Deep Neural Network (DNN) models to
predict the purity of products in simulated moving bed (SMB) separation processes. Both models
achieved very low prediction errors, but the DNN model demonstrated higher optimization ability,
successfully identifying improved process conditions beyond the training data range [27].

Overall, these studies indicate that while ANNs and SVR remain top performers for adsorption
modelling, tree-based ensemble methods like Random Forest and XGBoost are equally powerful for
specific applications due to their robustness and interpretability. The choice of algorithm ultimately
depends on the problem complexity, data volume, and need for optimization. Importantly, deep
learning models such as DNNs are showing growing potential, offering faster simulation speeds and
the ability to generalize to new operating conditions, making them highly valuable for future process
modelling and real-time optimization in adsorption systems.

7. Conclusion
The use of machine learning in modelling and optimizing the adsorptive separation process

is covered. A compilations recent published papers examined how ANN can perform better in a
variety of adsorption systems than conventional statistical and mechanistic models. To achieve high
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accuracy in predicting results output, ANN models have successfully integrated parameters including
pH, bed height, influent flow rate, and initial concentration. ANNs have demonstrated better
prediction outcomes than other methods in numerous instances. The other alternative ML models
covered in this work include support vector machines, XGBoost, random forests, and decision trees.
ANN provides far more precise and reliable predictions for the design and optimization of adsorption
separative processes, even though these models have some advantages. Future research might be
implementing ML hybrid model could lead to a more effective and economical method as much more
different ML algorithms will be created in the future.
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Table 1

Summary of optimized ANN configurations from literatures

Number of datasets (training, ANN Hidden layer activation ~ Output layer activation =~ Model Performance
Name of Authors S . ) . .
validation, test) configuration function functions metrics
Atta (2024) Not specified (70,15,15%) 1-1-1-1 Sigmoid Linear R2(0.999)
. . R?(0.99)
]S)(z)lzg,églzail), Mallmann and ?7502 15.15%) 3-10-1 i—ilgﬁfs;tzlohc tangent Lincar SSE(0.0459)
»19, MSE(0.000186)
185 I-13-3 R%(0.99)
Das and Mishra (2021) (70,15,15%) }:;5)3—3 Not specified Not specified MSE(0.000209)
96 . . . )
Gupta and Kumar (2021) (79.12,10.42.10.42%) 3-6-6-6-1 Sigmoidal Linear R*(0.99907)
, 100 . . . R?(0.988)
Dalhat, Mu'Azu, Essa (2021) (70,15,15%) 5-5-1 Sigmoidal Linear RMSE(0.0472)
Yusuf, Song, Li (2020) 1000 4-10-1 Tanh Tanh R2(0.998)
’ ’ (not specified) '
562 R2(1.0)
Chittoo and Sutherland (2020) Sl o 3-13-2 Tansig Tansig RSME(1.5628)
(70,n0 validation,30%) MSE(2.4423)
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