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Tribology plays a pivotal role in determining the performance and durability of 
mechanical systems. Friction and wear reduce component life, increase costs, 
and affect system reliability. This study explores how Machine Learning (ML) 
models can predict tribological behavior-specifically coefficient of friction (COF), 
temperature, and worn area-based on experimental data from block-on-ring 
tests. Using lubricants and coatings as input parameters, three supervised ML 
algorithms were applied: Random Forest (RF), Decision Tree (DT), and Support 
Vector Regression (SVR). The dataset was pre-processed and split into training 
and testing sets. Hyperparameters were optimized using grid search. Results 
show RF provides the best accuracy for COF and worn area prediction, while DT 
performs best in predicting temperature. SVR showed the least accuracy across 
all outputs. These findings demonstrate the potential of ML as a predictive tool 
in tribology. 
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1. Introduction 
 

The reliability and longevity of internal combustion engines are closely linked to the performance 
of their lubrication systems. Lubricants play a critical role in forming protective films on contact 
surfaces, thereby reducing friction, minimizing wear, and maintaining operational stability under 
varying loads and temperatures [1] . In recent years, there has been a growing shift in the automotive 
industry towards the use of low-viscosity oils, such as SAE 5W30 and SAE 0W20, primarily driven by 
the need to improve fuel efficiency and reduce emissions [2]. However, this transition presents new 
tribological challenges. Lower viscosity reduces fluid film thickness, potentially increasing direct 
contact between surfaces and accelerating wear mechanisms [3], especially under high-stress 
conditions. 
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To address these challenges, attention has turned toward enhancing the performance of 
lubricants through the incorporation of solid additives, particularly nanomaterials such as graphene 
[4] and fullerene [5], and the application of surface coatings [6]. These materials offer unique 
mechanical and thermal properties that can reduce friction and wear beyond the capabilities of 
conventional lubricant formulations [7,8]. Various experimental studies have reported 
improvements in tribological performance when such additives or coatings are used independently 
[9,10]. Nonetheless, the effects of their combined use, particularly under conditions representative 
of engine operation, remain insufficiently studied. Furthermore, a systematic evaluation of these 
advanced materials across multiple tribological indicators such as friction coefficient, wear area, and 
temperature rise is still lacking [4,11]. 

Experimental investigations in tribology are inherently complex, involving numerous 
interdependent variables including load, speed, temperature, material combinations, and lubrication 
regimes. Conducting comprehensive experimental trials is time-consuming and resource intensive. 
In this context, data-driven approaches, particularly those based on machine learning (ML), have 
emerged as a practical tool to analyze and predict tribological behavior [12]. ML algorithms can 
process large datasets to identify trends, model non-linear relationships, and provide accurate 
estimations of key performance indicators [13]. Such models have the potential to complement 
experimental methods by reducing the number of physical tests required and enabling more efficient 
material selection and lubricant design. Despite these advantages, the application of machine 
learning in tribological analysis especially in relation to engine lubricants modified with advanced 
additives and coatings is still in its early stages [13,14]. There remains a need for studies that not only 
develop predictive models but also validate them against empirical data obtained from standardized 
testing methods. 

This research addresses this gap by developing and validating machine learning models to predict 
the coefficient of friction, worn area, and temperature using data from block-on-ring tribological tests 
involving various lubricants and coatings [15]. The significance of this work lies in its potential to 
improve understanding of tribological performance under realistic operating conditions, while also 
demonstrating how predictive modeling can be integrated into material evaluation processes. The 
objective is to provide a framework for optimizing lubricant and surface treatment combinations 
using a combination of experimental and computational methods. 
 
2. Methodology  
2.1 Data Collection 

 
The dataset used in this study was sourced from previously published experimental work 

involving tribological tests performed using a block-on-ring configuration [15]. The experiments 
covered 10 types of lubricants, and 6 types of coatings applied to the ring surfaces. Parameters such 
as weight loss, contact surface temperature, angular speed, and torque were recorded at regular 
intervals of 60 seconds. These values were used to compute the coefficient of friction (COF), along 
with the worn area and temperature, which serve as the primary outputs of interest for this study 
(refer Table 1). 
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                                         Table 1 
                                         Summary of experimental variables from [15] 

Category Details 

Lubricants 10 types (e.g., SAE 5W30, SAE 0W20, 
etc.) 

Coatings 6 types (e.g., DLC, TiN, CrN, etc.) 
Measured at 60 seconds interval 

Measured parameters 

- Weight loss (mg)  
- Contact surface temperature (°C)  
- Angular speed (RPM)  
- Torque (Nm) 

Derived outputs 
- Coefficient of Friction (COF)  
- Worn Area (mm²)  
- Surface Temperature (°C) 

 
2.2 Data Pre-processing  

 
Prior to model development, the dataset underwent a series of pre-processing steps to ensure 

data consistency and compatibility with machine learning (ML) algorithms. Redundant or constant 
variables, such as material composition of the block and ring and applied load, which remained 
unchanged across all samples, were removed to prevent unnecessary model complexity. Categorical 
entries such as lubricant or coating names (e.g., “drilling oil”, “cutting fluid”) were encoded into 
numerical values to enable their interpretation by ML models. 

Feature scaling was applied to normalize the numerical data and mitigate the influence of 
differing value ranges across features. Missing or outlier data points were reviewed and treated 
accordingly. To ensure random distribution and prevent bias, the dataset was also shuffled before 
further processing. As each ML model processes one target output at a time, the input features were 
prepared separately for predicting each of the three target outputs: COF, worn area, and 
temperature.  

 
2.3 Data Splitting  

 
The complete dataset was divided into training and testing subsets using the train-test split 

method. A ratio of 75:25 was applied, where 75% of the data was used to train the models and 25% 
was reserved for testing. The training dataset was used to establish the relationship between the 
input features and the target output, while the test dataset was used to evaluate the predictive 
accuracy of the trained models on unseen data. 

 
2.4 Machine Learning Models  

 
Three supervised learning algorithms were selected for model development: Random Forest (RF), 

Support Vector Regression (SVR), and Decision Tree (DT). These models were chosen based on their 
proven ability to handle nonlinear data, their robustness against overfitting (particularly in ensemble 
methods like RF), and their interpretability. Each model was trained and evaluated separately for the 
three target outputs. The comparative analysis aimed to determine which model performed best for 
each prediction task. 

 
 
 



International Journal of Advanced Research in Computational Thinking and Data Sciences   
Volume 6, Issue 1 (2025) 28-37 

 

31 
 

2.5 Hyperparameter Optimization  
 
To improve the performance of the ML models, grid search optimization was employed to identify 

the most suitable hyperparameters. Grid search systematically evaluates all possible combinations 
of predefined hyperparameter values and selects the configuration that yields the best model 
performance on the training set. The optimized parameters were then used to retrain the models 
before final evaluation. 

 
2.6 Model Evaluation  

 
Model performance was assessed using a combination of standard regression metrics. The 

coefficient of determination (R²) served as the primary metric, indicating how well the model 
explained the variance in the dataset. An R² value closer to 1 signifies better predictive performance. 
Acceptable model accuracy was defined as R² ≥ 0.70, while values above 0.90 were considered 
excellent. In addition to R², error-based metrics were calculated, including Mean Absolute Error 
(MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). These metrics quantify the 
average deviation between predicted and actual values and provide further insight into model 
accuracy. Lower values across all three metrics indicate higher model precision.  The equations used 
for these performance metrics are as follows: 

 
𝑀𝐴𝐸 = !

"
∑ |𝑦#	 − 𝑦)|"
#%!                                 (1) 

 
𝑀𝑆𝐸 = !

"
∑"#%! (𝑦#		 −	𝑦))&                  (2) 

 

𝑅𝑀𝑆𝐸 =/!
"
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𝑅2 = 1	 −	
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2

∑"𝑦𝑖−𝑦$
2                                                 (4) 

 
Where, 
𝑦#	- represents the actual values. 
𝑦) - represents the predicted values. 
𝑦- is the mean of the actual values. 
N - is the number of data points. 
 

3. Results and Discussion 
 

Three ML models were used in this study; Random Forest (RF), Support Vector Regression (SVR), 
and Decision Tree (DT). The ML models were used to predict tribological behaviour which are COF, 
temperature and worn area. To evaluate the performance of the ML models, the MSE, MAE, RMSE 
and R² for each model in predicting the COF, temperature and worn area of the block are shown in 
the Table 2 – Table 4. 
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3.1 Performance of Machine Learning (ML) models for Coefficients of Friction (COF) 
 

Table 2 shows the performance of each ML models in predicting the COF for steel block. RF and 
DT models attained a decent value of R² which are 0.7828 and 0.6909. However, SVR model recorded 
a quite deviated value of R² which is -84.2046. The obtained negative result may be due to the 
inaccuracy of the experimental results and datasets. The Random Forest (RF) model achieved the 
highest R2 value of 0.7828 for predicting the Coefficient of Friction (COF), indicating good 
performance. This model exhibits 78% accuracy in predicting COF for steel blocks and tribological test 
factors. The MSE, MAE, and RMSE values for this model were impressively low at 9.4970, 0.0022, and 
0.0031, respectively, indicating high prediction accuracy. 

 
Table 2 
Summary of Performance of ML models for COF 
ML models MSE MAE RMSE R2 
Random Forest 9.4970 0.0022 0.0031 0.7828 
Support Vector Regression 0.0037 0.0560 0.0610 -84.2046 
Decision Tree 1.3517 0.0023 0.0037 0.6909 

 
Figure 1 - Figure 3 show comparison of actual and prediction of COF over observation number for 

RF, SVR and DT models respectively. Figure 1 shows a comparison between the actual and predicted 
coefficients of friction (COF) using the Random Forest model. Figure 2, corresponding to the SVR 
model, shows a considerable mismatch between the actual (blue dots) and predicted (red dots) 
values, with high fluctuations in the predicted values across observations. This indicates that the SVR 
model fails to capture the underlying pattern accurately, leading to poor prediction consistency. In 
contrast, in Figure 3, which represents the Decision Tree model, demonstrates a much closer 
alignment between the actual and predicted values. The predicted values (red dots) follow the actual 
trend (blue dots) with reduced deviations, suggesting that the Decision Tree model provides a more 
accurate and stable prediction of the COF compared to the SVR model. 

 

 
Fig. 1. Actual vs. Predicted value of COF by RF Model 
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Fig. 2. Actual vs. Predicted value of COF by SVR Model 

 

 
Fig. 3. Actual vs. Predicted value of COF by DT Model 

 
3.2 Performance of Machine Learning (ML) models for Temperature 
 

The performance indicators for machine learning (ML) models used to predict steel block 
temperatures are presented in Table 3. The test sets for the ML models exhibit R2 values ranging from 
0.1935 to 0.8250. In terms of Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean 
Squared Error (RMSE), the ranges were 212.1415 to 977.6777, 9.0818 to 21.4694, and 14.5651 to 
31.2678, respectively.  

 
Table 3 
Summary of performance of ML models for temperature 

ML models MSE MAE RMSE R2 
Random Forest 338.0329 10.1399 18.3857 0.7212 
Support Vector Regression 977.6777 21.4694 31.2678 0.1935 
Decision Tree 212.1415 9.0818 14.5651 0.8250 

 
Figure 4 compares the actual and predicted temperatures using the Random Forest (RF) model, 

showing a strong alignment between the two, indicating that RF effectively predicts temperature 
variations in the tribological system. The Decision Tree (Figure 6) also exhibits good predictive 
accuracy, with predicted temperatures closely matching actual measurements. However, Figure 5, 
representing the SVR model, reveals a significant discrepancy between the predicted and actual 
values, with larger fluctuations observed. This poor performance could be due to SVR's sensitivity to 
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the choice of kernel function and hyperparameters, which may not be optimally tuned for this specific 
dataset.  
 

 
Fig. 4. Actual vs. Predicted value of lubricant temperature by RF Model 

 

 
Fig. 5. Actual vs. Predicted value of lubricant temperature by SVR Model 

 

 
Fig. 6. Actual vs. Predicted value of lubricant temperature by DT Model 

 
3.3 Performance of Machine Learning (ML) models for Worn Area 
 

Table 4 shows Machine Learning (ML) model performance in predicting the Worn Area. The R2 
values on test sets ranged from 0.2797 to 0.8270 for the machine learning (ML) models. The Mean 
Squared Error (MSE) ranged between 54.0492 and 224.9788, Mean Absolute Error (MAE) ranged 
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between 4.2374 and 9.5836, and Root Mean Squared Error (RMSE) varied between 7.3518 and 
14.9993. Among the models, Random Forest (RF) recorded the highest R2 value, which is 0.8270. This 
indicates that the RF model successfully identified the worn area of the block.  

 
Table 4 

  Summary of Performance of ML models for Worn Area 
ML models MSE MAE RMSE R2 
Random Forest 54.0492 4.7657 7.3518 0.8270 
Support Vector Regression 224.9788 9.5836 14.9993 0.2797 
Decision Tree 63.5641 4.2374 7.9727 0.7965 

 
Figure 7, the actual versus predicted wear area values for the Random Forest (RF) model show a good fit, 

indicating that RF can predict wear characteristics accurately. Similarly, the Decision Tree model (Figure 9) also 
provides a reliable prediction with minimal deviation from actual values. However, the Support Vector 
Regression (SVR) model, as shown in Figure 8, struggles significantly, with a poor alignment between predicted 
and actual wear areas. The R-squared value of 0.2797 further supports this, suggesting a weak model fit. The 
reason for SVR's lower performance could be its limitations in handling non-linear relationships in the data, 
compared to RF and Decision Tree, which better capture the complexity of the wear patterns. The fluctuating 
predictions from SVR indicate it cannot generalize well for this dataset.  

 
 

 
Fig. 7. Actual vs. Predicted value of worn area by RF Model 

 

 
Fig. 8. Actual vs. Predicted value of worn area by SVR Model 
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Fig. 9. Actual vs. Predicted value of worn area by DT Model 

 
The main finding from this study highlights the predictive power of machine learning models, 

particularly Random Forest, in forecasting these tribological parameters. These findings emphasize 
the importance of selecting optimal lubricants and coatings for better performance in industrial 
applications, with machine learning offering valuable insights for optimization. 
 
4. Conclusions 
 

In conclusion, machine learning models were employed to predict and validate the coefficient of 
friction, worn area, and temperature. The Random Forest (RF) model performed best for predicting 
both the coefficient of friction and wear area, while the Decision Tree (DT) model excelled at 
predicting temperature. These findings demonstrate the potential of machine learning in enhancing 
the predictive accuracy of tribological behavior based on lubricant and coating properties. 

Overall, this study contributes to optimizing lubrication strategies and improving predictive 
capabilities in tribology, offering a clearer path toward enhancing engine durability and performance 
through data-driven approaches. 
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