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real-time web-based Graphical User Interface (GUI). Localization is achieved through
Received Signal Strength Indicator (RSSI) trilateration and fingerprinting, enhanced by
a Kalman filter to mitigate multipath interference and signal noise. Experimental
results demonstrate a positioning accuracy of 74.27% in static conditions and 72%
during autonomous movement. While the ultrasonic sensor system achieved a 100%
success rate in detecting static obstacles of varying materials (cloth, glass, cardboard)
within a 25 cm range, the reliability of the obstacle avoidance maneuver was limited

Keywords: (20% success rate) due to orientation drift inherent in the open-loop motor control
Autonomous robot; BLE; indoor mechanism. The system offers a scalable, cost-effective prototype for indoor
positioning system; obstacle avoidance; navigation with potential applications in environments such as warehouses and smart

RSSI; trilateration; fingerprinting; ESP32 buildings, subject to further domain-specific validation.

1. Introduction

The demand for self-operating robots in the service and manufacturing industries has sparked a
large amount of research in sensor technology and robotics. However, traditional Global Positioning
System (GPS) based location does not work indoors because the signal is lossy and blocked. It is
obvious that alternative indoor positioning systems (IPS) need to be developed. One popular
alternative is Bluetooth Low Energy (BLE) which is relatively low power and nowadays fairly
ubiquitous in modern microcontrollers (e.g. the ESP32) and also in many devices (from tracking labels
over smartwatches to fitness trackers).

There are three objectives that were focused in this research; to develop an autonomous robot
capable of detecting and avoid obstacles by itself within an indoor environment; to integrate a
Bluetooth Low Energy (BLE)-based Indoor Positioning System (IPS) into the robot; and to evaluate
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the BLE-based Indoor Positioning System and robot navigation performance for accuracy, and
precision.

The system uses trilateration and fingerprinting techniques to estimate the position of the robot
from RSSI measurements reported by stationary ESP32 BLE beacons. We use a Kalman filter to
improve localization accuracy by removing noise and multipath interference. Kalman Filter is a
numerical system used to estimate the state of a system from noisy measurements over time, in this
project the received signal strength (RSSI). The RSSI is then used to estimate the distance between
the two-point using the Free Space Path Loss which mathematical models how the strength of a
wireless signal decreases when it travels through space. The robot communicates with the beacons
in a direct manner via Wi-Fi, enabling efficient and secure real-time data transfer. Users are given a
web-based interface hosted by the ESP32-CAM module to see the location of the robot in real time.
Obstacle detection is an extremely important feature for autonomous robots navigating through
dynamic environments. Sensor technologies have been explored for this purpose like the ultrasonic
[1].

Ultrasonic sensors are favored due to their affordability, extensive range, and consistency in
varied environmental conditions [2]. The sensor emits high-pitched sound waves and measures the
time for echo to return, enables accurate distance measurement even when there is dust or darkness
[3]. Ultrasonic sensors are less affected by ambient light than other sensors like IR and LiDAR and
provide consistent readings at extended ranges [4]. However, they may struggle with soft, bent, or
small things that do not shine well [5]. Despite these, ultrasonic sensors remain a good choice for
real-time obstacle detection for autonomous indoor robots [6]. LiDAR provides spatial high-
resolution information at a more expensive and computational demanding [7]. There have been
research that demonstrated effective obstacle avoidance with sensor fusion techniques including
ultrasonic, LiDAR, and encoder sensors in order to provide smooth navigation without stop [8][9]. For
this project, ultrasonic sensors were used because they are cheap, dependable, and appropriate for
real-time applications indoors [10].

Autonomous robot navigation involves real-time decision-making algorithms allowing the robot
to adjust its path based on sensor input. There have been researches that demonstrated effective
autonomous navigation programs based on sensor fusion techniques [11]. Localization is an
important role played by autonomous robots to determine their position in the environment.
Techniques employed include fingerprinting, triangulation, and trilateration [10]. Trilateration is
preferred owing to its simplicity and scalability for wide areas under the utilization of Bluetooth Low
Energy (BLE) Received Signal Strength Indicator (RSSI) values [12]. Trilateration determines the
position of the robot based on distances obtained from RSSI values reported by at least three
stationary BLE beacons [13]. while building a signal characteristic map at different known locations
in an environment.

Fingerprinting, another popular approach, forms a signal characteristic map at different known
locations and enables the robot to estimate its location by comparing real-time observations with
previously collected data [14]. As there is noise and multipath interference indoors, filtering
procedures such as Kalman filtering may be employed to increase localization accuracy [15]. Such
provides a database whereby a device or robot can understand its location through comparison
between observations from the current instance and those that were obtained previously.
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2. Methodology

The proposed system for autonomous indoor navigation is based on a distributed architecture
consisting of two primary components: a mobile robotic platform and a network of stationary
Bluetooth Low Energy (BLE) beacons. The overall methodology integrates hardware selection, system
software development, and algorithmic implementation to achieve robust localization and
navigation. This section details the hardware architecture of the robot and beacons, the
implementation of the Received Signal Strength Indicator (RSSI)-based localization algorithms, the
mechanism for ultrasonic obstacle avoidance, and the design of the real-time communication
protocol and user interface for positioning.

2.1 Autonomous Robot

The autonomous robot is fundamentally composed of two primary components, hardware and
software. The term hardware refers to the physical elements of the robot that make up for the robot
itself. In this case, the robot is equipped with two microcontrollers, the ESP32-CAM and a standard
ESP32. Both microcontrollers are strategically mounted onto the robot's chassis as shown in Figure
1. The standard ESP32 serves as the central processing unit, managing data and operations while also
broadcasting a Bluetooth Low Energy (BLE) signal to facilitate communication with other devices.
Meanwhile, the ESP32-CAM plays a dual role, in addition to providing capabilities for image capture
and processing, it also functions as a Wi-Fi access point. This setup allows the ESP32-CAM to host a
web user interface (WebUI), which is essential for remote monitoring of the robot's activities.

The purpose of integrating two microcontrollers into a single robot is to reduce the processing
load. The system is performance optimized by appointing one microcontroller to control the
movements of the robot and the other to host the web user interface (WebUI) and serve as a Wi-Fi
access point. The combination of hardware components allows the robot to function independently
while giving users real-time access to its operational status through the hosted web interface. This
task division helps keep any one component from becoming overloaded.

MOTOR ULTRASONIC
DRIVER Z SENSOR AND

MICROCONTROLLER

EsF32 MICROCONTROLLER

ESP32CAM

Fig. 1. The robot setup and hardware component

The software side of the robot entails a code uploaded through the Arduino IDE that facilitates
direct communication protocols between the various microcontrollers. the generic ESP32 and ESP32-
CAM on the robot and three ESP32-C3 supermini modules being used as reference points. This setup
is necessary to enable the microcontrollers to receive RSSI (Received Signal Strength Indicator)
readings, which characterize signal strength and are utilized to calculate the location of the robot.
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The processed RSSI information is transferred to a web user interface (WebUI) to enable users
to monitor the operational status and location of the robot in real time. The Web User Interface
(WebUI), as shown in Figure 2 is hosted directly on the ESP32-CAM module mounted on the robot.
The WebUI is developed using light coding languages such as HTML, CSS, and JavaScript to ensure
that the design is kept light in order not to cause unnecessary network overload. The design is
intentionally made simple for quick access and response. The live camera feed is at the center of the
WebUI, that provides real-time feedback of the surrounding environment of the robot. In addition,
the interface also shows a basic two-dimensional map which is designed based on the physical
structure of the indoor environment where the robot is intended to be utilized. The WebUI further
includes a convenient download feature, enabling users to download Received Signal Strength
Indicator (RSSI) values for all three reference points and the history of the last ten positions. The
downloaded data is in structured JSON format, a more organized data for convenient processing

Indoor Positioning System

Fig. 2. The Web Ul that shows the interface
of the monitoring system

The robot process flow is shown as Figure 3. The process begins with the initialization of the
monitoring system, which establishes communication between the robot and BLE beacons via Wi-Fi.
The robot sends a BLE signal that is picked up by the reference points (BLE beacons), and they reply
by sending RSSI values to the robot. The RSSI values are used to estimate the robot's position by using
both trilateration and fingerprinting techniques.

Once the robot has determined its position, it proceeds to plan its path to the given location.
During movement, the robot continuously updates its position and reports to a web-based platform
for real-time monitoring. When encountering any obstacle during movement, the robot activates its
obstacle avoidance system. The robot scans left and right using an ultrasonic sensor interfaced with
a servo motor, compares the distances, and steer accordingly to avoid collision. Having avoided the
obstacle, the robot resumes its journey until it reaches the predetermined destination, where the
process terminates.
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Fig. 3. The autonomous robot system flowchart

2.2 Communication Protocol

The research utilizes two wireless communication technologies, Bluetooth Low Energy (BLE) and
Wi-Fi. BLE is primarily used to collect Received Signal Strength Indicator (RSSI) values between the
robot and fixed ESP32 beacons for real-time localization [16], while Wi-Fi is employed to enable
seamless data communication between microcontrollers with assured reliability and low latency [17].
This includes sending BLE RSSI values and enabling direct communication to prevent data loss and
enable real-time monitoring. The ESP32-CAM on the robot handles the task of establishing this Wi-Fi
network and serves as a web server to host the web interface for monitoring.

Obstacles

Programming Localization

technique
-
1
i
i
Reference N
points

Fig. 4. The communication protocol for the
wireless communication between the robot,
beacons, and the esp32CAM
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The complete system communication architecture is illustrated in Figure 4. Multiple ESP32
devices are paired with the robot's ESP32 via BLE to receive their respective RSSI values, which are
then transmitted to the ESP32-CAM for distance calculation and position estimation. All the
information collected is presented on the web interface, which can be viewed by any device
connected to the same network.

2.3 Obstacles Detection and Avoidance

The obstacle detection and avoidance of the robot consists of two distinct modules, the detection
phase and the avoidance phase. The primary objective of obstacle detection is the detection of
obstacles' existence only and not the calculation of their precise distance or dimension. As it is, the
sensor is not needed to be very accurate or have numerical readings in detail, it is sufficient for the
ultrasonic sensor to be able to detect the presence of an obstacle. The sensor is also mounted on top
on a 180-degree servo, optimizing the robot's detection coverage. It allows the robot to maintain
efficiency in its operation while still being able to respond to obstacles in real time. Thus, the system
prioritizes reliable detection over precision. For robot obstacles avoidance, the robot will perform a
series of pre-programmed movement uploaded to the robot as below:

15
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Q=D& 3

Fig. 5. Robot obstacles movement

The robot is programmed to have a predetermined series of movements from 1 to 15. Every
movement corresponds to an action that the robot performs within its environment. Movements 1,
3,5,7,9, 11, 13, and 15 are reserved for stopping both wheels of the robot's motor, effectively
stopping it at various locations along its track. This action allows the robot to come to a halt because
of changes in its environment or because an obstacle is detected, thus ensuring safety and control
during movement. Conversely, movements labeled 2, 6, 10, and 14 are crafted for the robot to rotate
its motors, allowing it to turn either left or right. This turning capability is crucial in allowing the robot
to navigate around corners and obstacles. The other movements in the sequence offer straight
forward motion, this structured movement sequence enhances the robot's ability of moving
efficiently while avoiding the obstacles.

2.4 Positioning
For the positioning of the robot, using the BLE’s RSSI value to determine the distance between

the robot (beacon) and the reference points. The positioning is done in a control environment with
the position desks and the beacon is fixed.
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il

Fig. 6. Layout for indoor positioning and how the
beacon is placed

The formula used to calculate the distance between the two is derived from the Free Space Path
Loss (FSPL) model, which describes how electromagnetic waves propagate through space without
obstacles or interference.

The derive formula is:

RSSI(d) = RSSi(d,) — 10nlogw(dio) (1)

where,
e d,istheis the known signal strength at a 1 meter
o nisthe path loss exponent in free space
e d isthe distance that obtain from the calculation

The variable n quantifies the rate of signal decay and is influenced by the surrounding environment.
Higher values of n suggest a denser environment that includes furniture, walls, and other obstacles that
can absorb or reflect the signal. In this project, the indoor environment consists primarily of tables and
chairs, leading us to set n to 3. This is a reasonable choice, as a typical value of 2 is used for open
environments with no obstructions. The formula can further simplify to,

referenceRSSI-RSSI

d=10 Ton (2)

Since the position is calculated using BLE'RSSI in real world application, they are bound to be noise
from the surroundings that can affect the actual reading. To cope with this problem, a filter is a must
to increase the reliability of the system. Kalman filter is employed to tackle this problem, Kalman filter
can adjust the filtered values and can learn to give out less noise output. The Kalman filter formula used
for this project is a variant of the filter with only accounted for one dimensional unit as shown below:

Xje = Xiek—1 + Kie (Zie = Xjpe—1) (3)
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Where,
® Xj the value of the new estimate
® Xy k-1 the value of the previous estimate
e K, Kalman gain
e 7, the measured RSSI value

The value of Kalman gain can be calculated using formula:

Ky = k2 (4)

Pk|k—1+R

Where,
®  Pyk—q predicted estimate error
¢ R measurement noise

The predicted estimate formula:
Pyik—1 = Pr—1 +Q (5)

Where,
e P,_; Kalman estimate error
e (Qprocess noise

Under calibration, the filter is run several times to be able to accommodate environmental factors
such as ambient temperature and noise, values of Q and R then set at 8 and 5, respectively. Because
the signal is very noisy, both values have been adjusted to the higher numbers to be able to make
allowance for unreliability of raw data. Since the robot is constantly in the moves, it is critical for the
filtering system to be able to distinguish quickly between good signals and noise. Due to the ambient
noise and multipath effects, the filtering technique was used to reduce errors and enhance
localization accuracy [18]. The Kalman filter used for this reason may respond too late in dynamic
conditions since it relies on previous estimates [19]. To overcome this limitation, the Kalman gain is
reset for each 30 cycles in runtime so that the filter would be able to learn quicker to changes in RSSI
and respond better to environment noise [20]. The filter would be able to respond better to changes
in RSSI values dynamically with dynamic adjustment of the Kalman gain while running, which makes
it responsive to the environment noise.

Effect of Kalman Filter on RSSI Signal Stability (1 Meter)

-110

Raw RSS|
—— Kalman Filtered

0 50 150 200

100
Time (Samples)

Fig. 7. The raw and filtered values of the
received signal strength
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Figure 7 above shows a sample of both raw and filtered RSSI values at 1 meter distance. The graph
shows the comparison between the before and after the application of Kalman filter. A filtered
reading showing a smoother signal curve compared to raw data.

3. Results and Discussion
3.1 Results

The outcomes of this experiment focused on the accuracy and reliability of Bluetooth Low Energy
(BLE) in determining the robot's position, as well as the robot's ability to detect and avoid obstacles.
For positioning, we assess accuracy both when the robot is stationary and when it is in motion toward
its designated location.

Figure 8 compares the robot's estimated position against its actual position in static and dynamic
scenarios. Accuracy is quantified using the Root Mean Square Error (RMSE) relative to the grid size.

ROBOT POSITION (MOVING)  @acua etstvarion
©ACTUAL POSITION 19

ROBOT POS|T|ON (STAT'C) ESTIMATION POSITION ®

. "
15
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©0®© 00060 0®®D O
©00000®0®00
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7
6
-2 0 2 4 6 8 10 12 14
X-AXIS

(a) (b)
Fig. 8. The actual position of the robot compared to the estimation position during both (a) static and
(b) moving movement

o

The accuracy is then computed using Euclidean distance to determine the error, which in this
context refers to the difference between the two points, applying the following formula:

2 2
d= \/(xactual position — Xestimate position) + (yactualposition — Yestimate position) (6)

The distance acquired from the formula above is the error between the two points. The larger the
magnitude of the distance indicates the larger error occurred. Root Mean Square Error can be
calculated using this formula:

1
RMSE = |-X,d} (7)

Where, n is the number of samples.

The accuracy percentage is defined by normalizing the error against the maximum possible
distance (d;qx) in the grid:

RSME

Accuracy = (1 - ) X 100% (8)

max

Where, d, 4 IS the maximum possible error relative to grid size which can be calculated using
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formula:

A = V172 + 172 = 24.0416

where, 17 is the maximum value for the x and y axis. The average accuracy of the robot during static
and dynamic movement are as below:

Table 1
Comparison of localization accuracy in static and dynamic conditions
Condition Sample Size (n) RSME (m) Average Accuracy (%)
Static 5 6.18 74.27
Moving 3 6.78 72.00

The average accuracy of the robot position during stationary is 74.27%. while the average accuracy
during moving is 72%.

For the obstacles detection, the result is as follows:

Table 2

Obstacle detection success rates across different materials (Distance = 25 cm)
Material Type  Total Trials Successful Detections Success Rate (%)
Cloth 5 5 100
Water bottle 5 5 100
Cardboard 5 5 100
Glass 5 5 100

The ultrasonic sensor demonstrated a 100% success rate in detecting static obstacles (cloth, water
bottle, cardboard, glass) at a distance of approximately 25 cm (Table 2). However, the obstacle
avoidance maneuver showed significant limitations as shown in Table 3.

Table 3

Reliability analysis of obstacle avoidance maneuvers

Test Scenario Trials  Successful Recovery Main Cause of Failure Accuracy (%)
Obstacle avoidance 10 2 Orientation drift (Open-loop control) 20

The accuracy of the robot's obstacle avoidance capabilities is lower than desired due to the robot's
orientation after each turn. Out of ten trials the accuracy rate is 20%.

3.2 Discussion

On the positioning aspect, the robot achieved a positioning accuracy of 74.27% when static,
decreasing slightly to 72% during motion. While the Kalman filter successfully smoothed the raw RSSI
data (as evidenced by the reduction in signal variance in Figure 7), the remaining error highlights the
inherent challenges of BLE-based positioning, such as signal fluctuation and multipath effects. It is
important to note that while the filter improved signal stability, a direct quantitative comparison of
positioning accuracy with and without the filter was not conducted in this study. The current accuracy
is dependent on the grid size; larger environments may introduce higher absolute errors. The loss of
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accuracy in movement indicates potential issues the system faces in varying scenarios. Since the raw
RSSI values have noise introduced by environmental factors such as ambient temperature, magnetic
fields, and the indoor space layout itself, some form of filtering is required to obtain more consistent
and reliable values for distance estimation. The Kalman filter used here can fail because it must learn
from past values in making a prediction on the next outcome. However, this does take time and gets
in the way of computation.

For the obstacle detection, the robot is 100% accurate in sensing various materials, including
cloth, water bottles, cardboard, and glass, which is an indication of its good sensor capabilities. The
100% accuracy resulted from the detection range set for this project, which is approximately 25 cm.
This range is perfect and allows the robot to pass over obstacles without tripping. The materials used
are not of a specific type either. For instance, a thin material may remain unnoticed by the ultrasonic
sensor as the ultrasonic sound can merely pass through it.

While detection was reliable across various materials, the avoidance system failed in 80% of trials.
This low success rate is directly checking attributed to the open-loop control system. The robot relies
solely on motor timing to determine turn angles. In the absence of feedback sensors (such as wheel
encoders or gyroscopes), factors like tire traction, battery voltage drop, and floor friction cause
orientation drift. A slight error in the turn angle accumulates, preventing the robot from returning
effectively to its original path.

Several limitations affect the system's robustness. First, BLE signals are highly susceptible to
environmental interference (human bodies, metal furniture), leading to RSSI instability despite
filtering. Second, the open-loop motor control renders the navigation prone to cumulative errors,
making it unsuitable for precision-critical tasks without hardware upgrades. Finally, the scalability of
the current trilateration approach may be limited in very large or complex environments where line-
of-sight to beacons is obstructed.

4. Conclusions

The implementation of an indoor self-sensing positioning robot based on Bluetooth Low Energy
(BLE) represents a significant development in autonomous navigation research. Through the
integration of ultrasonic sensors for obstacle detection and BLE for real-time positioning, the system
demonstrates a viable alternative to GPS for indoor environments. The combination of trilateration
techniques with a Kalman filter effectively stabilized signal readings, resulting in an average
positioning accuracy of approximately 74% in static conditions.

While the positioning results demonstrate potential, the obstacle avoidance system requires
substantial improvement. The 20% success rate in avoidance maneuvers highlights the inadequacy
of open-loop control for precise navigation. Future work will prioritize the integration of wheel
encoders and an Inertial Measurement Unit (IMU/Gyroscope) to provide closed-loop feedback,
directly addressing the orientation drift issue. Additionally, exploring advanced sensor fusion
algorithms could further mitigate BLE signal instability. With these enhancements, the system
architecture shows promise for applications in smart buildings and warehousing logistics.
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