

Future Energy and Environment Letters

FUTURE ENERGY AND ENVIRONMENT LETTERS

Journal homepage: https://karyailham.com.my/index.php/feel ISSN: 3083-8940

The Castle Bravo: Lessons from Bikini Atoll

Claudius Edan Geoffry¹, Siti Amira Othman^{1,*}, Mazlinaa Mohd Halim¹, Muhammad Zarhin Roslin¹

Department of Physics and Chemistry, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, 84600, Pagoh, Johor, Malaysia

ARTICLE INFO ABSTRACT On March 1, 1954, the United States conducted the Castle Bravo thermonuclear test at Bikini Atoll Article history: Received 13 August 2025 in the Marshall Islands as part of Operation Castle. Intended to validate a new dry-fuel hydrogen bomb design with an expected yield of 6 megatons, a miscalculation involving lithium-7 reactivity Received in revised form 31 August 2025 produced an unprecedented 15-megaton explosion—the largest in U.S. history. The resulting Accepted 15 September 2025 radioactive fallout extended far beyond predicted zones, contaminating nearby atolls, exposing Available online 7 October 2025 over 200 Marshallese residents, and irradiating the crew of the Japanese fishing vessel Daigo Fukuryu Maru, leading to acute radiation sickness, long-term cancers, and fatalities. This paper examines the geopolitical context, technical causes, and immediate and long-term impacts of the test, including environmental devastation, forced displacement, and the onset of widespread health crises. The incident intensified global anti-nuclear sentiment, contributed to the 1963 Partial Nuclear Test Ban Treaty, and underscored critical shortcomings in nuclear safety protocols Keywords: and emergency preparedness. Lessons from Castle Bravo highlight the ethical responsibility in Castle Bravo; nuclear test; Bikini Toll; weapons testing, the necessity of timely evacuation and transparent communication, and the nuclear safety long-term environmental and humanitarian costs of atmospheric nuclear detonations.

1. Background of Location

On March 1, 1954, the United States carried out a high-yield thermonuclear detonation at Bikini Atoll in the Marshall Islands, known as the Castle Bravo nuclear test [1]. During the Cold War, it was the first and biggest test of Operation Castle, a set of nuclear tests meant to create more potent hydrogen bombs. The goal of the test was to verify a dry-fuel hydrogen bomb design that was predicted to produce six megatons of TNT. However, the explosion produced an unusually high yield of 15 megatons 2.5 times greater than expected due to a design error in the weapon. Due to this miscalculation, the United States had its greatest nuclear explosion to date, causing radioactive fallout that traveled widely and affected adjacent inhabited islands like Rongelap and Utirik as well as distant regions like Japan. Both human health and the ecosystem suffered greatly as a result of the fallout, which exposed the impacted people to high levels of radiation and had long-term effects. Additionally, the test caused international outrage, especially after the radioactive fallout exposed the crew of a Japanese fishing vessel, Daigo Fukuryu Maru (Lucky Dragon No. 5), resulting in disease and death [2].

E-mail address: sitiamira@uthm.edu.my

*

https://doi.org/10.37934/feel.4.1.2632

^{*} Corresponding author.

During the Cold War, a time of geopolitical tension between the US and the USSR, the Castle Bravo test was carried out. The goal of the arms race between the two superpowers was to create more potent nuclear bombs. In contrast to earlier versions of hydrogen bombs that used liquid deuterium as fuel, the United States sought to develop a deployable thermonuclear weapon that was more effective and lighter [3].

Because lithium deuteride was a more predictable fuel source, it was used in the new device that was tested at Castle Bravo [4]. The reactivity of lithium-7, which constituted a significant amount of the fuel, was overestimated by experts. By taking part in the fusion reaction rather than being dormant, lithium-7 significantly increased the bomb's explosive yield and significantly broadened the range of radioactive fallout.

Details of The Test

Date: March 1, 1954

Location: Bikini Atoll, Marshall IslandsOperation: Part of Operation Castle

Device Name: Shrimp (dry-fuel hydrogen bomb

Expected Yield: 6 megations

Actual Yield: 15 megatons (2.5 times higher than expected)

Crater Size: 2 kilometers (1.2 miles) in diameter, 80 meters (260 feet) deep
Fallout Spread: Radioactive debris reached Rongelap, Utirik, and even Japan

 Casualties: Over 200 Marshallese exposed to dangerous levels of radiation, and 23 Japanese fishermen affected

Due to unforeseen wind shifts, a huge cloud of radioactive debris from the explosion spread hundreds of kilometers [5]. Because Rongelap and Utirik residents were not evacuated right away, they suffered radiation poisoning, burns, nausea, and long-term health issues. Aikichi Kuboyama, a crew member of the Japanese fishing vessel Daigo Fukuryu Maru, was killed by the fallout from the ship, which also sparked a global anti-nuclear movement in Japan. The exiled islanders were unable to return safely due to ongoing radiation contamination, which left Bikini Atoll and the surrounding areas uninhabitable.

The Castle Bravo test, which illustrated the unavoidable and catastrophic effects of nuclear weapons, constituted a watershed in the history of nuclear knowledge worldwide [6]. It fueled the global anti-nuclear campaign, especially in Pacific Island countries and Japan. The 1963 Partial Nuclear Test Ban Treaty, which forbade atmospheric nuclear testing, was the result of the test's acceleration of debates about the risks of radioactive fallout.

2. Method of Handling Nuclear Emergency

Nuclear emergencies rank as the worst possible disasters, which can generate catastrophic destruction, lasting health consequences, and heavy damage to the environment. Due to nuclear weapon explosions, nuclear reactor accidents, or radiological dispersal devices ("dirty bombs"), these emergencies must be handled carefully, swiftly, and by designing long-term recovery plans. Lack of sufficient readiness and speedy action can result in radiation-induced acute radiation sickness, genetic abnormalities, cancer, and even deaths by the mass [7].

Most well-known nuclear accident ever was the Castle Bravo Test, conducted by the United States on March 1, 1954, at Bikini Atoll in the Marshall Islands. The test of the hydrogen bomb, as part of Operation Castle, was intended to yield 6 MT of explosive energy, but due to an arithmetic error in the weapon's design, it delivered a much greater yield of 15 MT, the biggest U.S. nuclear explosion ever. Through an analysis of Castle Bravo's shortcomings, this topic formulates a comprehensive methodology for dealing with nuclear emergencies, guided by modern nuclear safety standards, e.g., those of the International Atomic Energy Agency (IAEA), Federal Emergency Management Agency (FEMA), and the U.S. Nuclear Regulatory Commission (NRC) [8].

Modern preparedness for nuclear emergencies involves several coordinated measures. Risk assessment and zoning should be conducted to identify potential nuclear threat areas, including power plants, military test sites, and regions of geopolitical tension. Public education and warning systems must be established through early warning systems such as sirens, radio broadcasts, and SMS alerts, along with citizen training in sheltering, evacuation, and radiation safety. Stockpiling emergency supplies is essential, including 72-hour kits with water, non-perishable food, medical equipment, flashlights, radios, and potassium iodide (KI) tablets to reduce radioactive iodine absorption [9].

In the immediate response phase, individuals should seek shelter indoors—preferably in basements or central areas of concrete buildings—away from windows and exterior walls to avoid heat and blast pressure. If caught outside, they should lie face down, shield their head, avoid looking at the blast to prevent flash blindness, and cover their nose and mouth to limit inhalation of radioactive particles. Shelters should be sealed by closing doors and windows, turning off ventilation systems, and reinforcing walls with dense materials like wood, brick, or concrete to absorb radiation.

For fallout protection and decontamination, contaminated clothing should be carefully removed and sealed in plastic bags, including shoes and coats to avoid recontamination. Individuals should wash thoroughly with lukewarm water and mild soap, gently scrubbing the skin but avoiding conditioner, which can trap radioactive particles in hair. Modern communication strategies require immediate dissemination of alerts through radio, television, and mobile applications, supported by dedicated nuclear emergency phone lines. Public announcements should be available in multiple languages, using clear and concise instructions to prevent misunderstandings.

Evacuation and medical response protocols emphasize early evacuation of high-risk zones before peak radiation exposure, using pre-mapped safe routes. Medical measures include administering KI tablets to protect the thyroid, providing first aid for radiation burns, and establishing decontamination stations before hospital admission. Finally, modern recovery strategies involve environmental decontamination through comprehensive radiation surveys and treatment of contaminated soil and water before reoccupation. Long-term health monitoring programs should be implemented to detect radiation-related illnesses, supported by government compensation for affected communities. Resettlement must only occur once radiation levels meet international safety standards, such as those set by the IAEA and EPA.

3. Discussion of Nuclear Test site of Bikini Atoll

The Bikini Atoll is a coral reef consisting of 23 islands within the Northern edge of the Marshall Islands. In 1946, the United States government began relocating native Bikini Islanders before using it and surrounding atolls for nuclear weapons testing for 12 years. Micronesian settlers first arrived over 2000 years ago at the Marshall Islands, which includes 30 atolls and over 1150 islands. However, because of their remote location, the settlers did not have contact with the outside world until the

Spanish spotted them in 1525. The settlers of Bikini Atoll remained isolated due to the atoll's location. Later, during World War I, the Marshall Islands were captured by the Empire of Japan [10].

The islands were left alone until the beginning of World War II when the islands became a strategic stronghold for the Japanese. The Marshall Islands remained out of the conflict until the Battle of Kwajalein in February 1944, when the United States successfully captured the island. The battle was seen as a significant moral victory to the United States and a warning to the Japanese to better prepare for American offensives and invasions.

The Castle Bravo device was housed in a cylinder that weighed 23,500 pounds (10,700 kg) and measured 179.5 inches (456 cm) in length and 53.9 inches (137 cm) in diameter. The device was mounted in a "shot cab" on an artificial island built on a reef off Namu Island, in Bikini Atoll. A sizable array of diagnostic instruments were trained on it, including high-speed cameras trained through an arc of mirror towers around the shot cab [11].

When Bravo was detonated, within one second it formed a fireball almost 4.5 miles (7.2 km) across. This fireball was visible on Kwajalein Atoll over 250 miles (400 km) away. The explosion left a crater 6,500 feet (2,000 m) in diameter and 250 feet (76 m) in depth. The mushroom cloud reached a height of 47,000 feet (14,000 m) and a diameter of 7 miles (11 km) in about a minute, a height of 130,000 feet (40 km) and 62 mi (100 km) in diameter in less than 10 minutes and was expanding at more than 160 meters per second (580 km/h; 360 mph). As a result of the blast, the cloud contaminated more than 7,000 square miles (18,000 km²) of the surrounding Pacific Ocean, including some of the surrounding small islands like Rongerik, Rongelap, and Utirik.

A few minutes after the detonation, blast debris began to fall on Eneu/Enyu Island on Bikini Atoll where the crew who fired the device were located. Their Geiger counters detected the unexpected fallout, and they were forced to take shelter indoors for a number of hours before it was safe for an airlift rescue operation. As a result of unexpected wind shear conditions, heavy fallout of debris from Bravo on atolls east of the Bikini Atoll test site resulted in high radiation doses to the populations of nearby atolls.

Prior to the tests, the original inhabitants of Bikini had been relocated, but residents of nearby atolls were not warned or evacuated, leading to severe health consequences from radioactive fallout. The event marked a critical moment in nuclear testing history, exposing flaws in safety protocols and the ethical treatment of affected populations. The nuclear tests changed the history of Bikini Atoll and the Marshall Islands, through the displacement of inhabitants, and the human irradiation and contamination caused by radionuclides produced by the tests [12].

Long-term exposure causes somatic mutations in DNA, leading to birth defects or genetic syndromes when spermatocytes or oocytes are exposed. This can result in various cancers, including lung, leukemia, lymphoma, thyroid, and breast cancers. Through workshops and consultations, OHCHR found that radiation exposure from the nuclear tests caused the "proliferation of cancers, of painful memories of miscarriages, stillbirths, and of what some Marshallese refer to as 'jellyfish babies', infants born with translucent skin and no bones."The 23 nuclear tests, including the 15-megaton *Castle Bravo* in 1954, vaporized coral reefs, created craters up to 2 km wide, and raised seawater temperatures to 55,000°C, obliterating marine life in blast zones. The lagoon contains radioactive shipwrecks and sediment, while marine organisms like coconut crabs and fish exhibit low-level radiation absorption. Turtles in the area show trace uranium isotopes in their shells, though no direct health impacts have been observed. Soil and groundwater radioactivity: Soil remains contaminated with cesium-137, strontium-90, and plutonium-239, with radiation levels (~639 mrem/year) exceeding safety standards for human habitation. Despite ecological recovery, Bikini's soil and groundwater remain unsafe for permanent human settlement due to long-lived isotopes like plutonium-239 [13].

From an environmental perspective, the test caused catastrophic environmental damage which included vaporized coral reef, radioactive sediment and long-term soil contamination. The tests also highlighted the irreversible harm of nuclear fallout on ecosystems, as radioactive particles entered the food chain and contaminated fish, affecting both marine life and human populations. Nuclear testing has near-permanent ecological consequences, even in resilient environments like coral atolls.

The radiation exposure disproportionately harms vulnerable communities and ethical oversight is critical in scientific research. The test exposed thousands to dangerous radiation including Marshall Islanders, Japanese fishermen and U.S military personnel. Acute radiation sickness, thyroid disorders, cancers, and birth defects plagued survivors for decades. Regarding this accident also, a global antinuclear movement existed. In Japan, a petition with 25 million signatures spurred the first World Conference Against Atomic and Hydrogen Bombs in 1955. Grassroots activism and survivor testimonies are powerful tools for policy change [14].

The Bikini Atoll story should be implemented into global school curricula. This is to ensure that children nowadays know about nuclear issues. Public awareness campaigns can leverage social media and documentaries about the catastrophic accident of nuclear test. Youth leadership programs like fund scholarships for Marshallese students can help their voices be heard for future decisions about their homeland. Medical care access needs to be provided for survivors and also their descendents who are suffering from radiation illnesses. New land should be provided and the parties who are responsible for any nuclear accident should give compensation to those who are affected. Survivors and descendants should be given more attention on their health, mental issues and their finances. Invest in advanced decontamination technologies, such as phytoremediation (using plants to absorb isotopes) and nanotechnology for sediment purification. Pilot projects could focus on hotspots like Bikini's lagoon and soil [15]. Establish an international consortium to track radiation levels in marine life, groundwater, and ecosystems. Use Al-powered sensors and satellite imaging to detect changes in real time. Integrate coral reef restoration with climate adaptation strategies, such as transplanting heat-resistant coral species and creating marine protected areas to shield recovering ecosystems from overfishing and warming oceans.

4. Conclusions

The 1954 nuclear test at Castle Bravo is still regarded as one of the most catastrophic nuclear events in history. It was initially supposed to be a normal test to create more potent hydrogen bombs, but design errors caused the bomb to explode with a devastating 15 megaton explosion, considerably exceeding expectations. The ensuing radioactive fallout had a devastating effect on the Marshallese people, the crew of the Japanese fishing vessel Daigo Fukuryu Maru, and the ecosystem as it spread across great distances.

The test demonstrated the unpredictability and uncontrollability of nuclear weapons, underscoring the serious humanitarian and ecological consequences of nuclear testing; the contamination of Bikini Atoll left the region uninhabitable for decades, displacing local populations and upsetting their traditional way of life; and the U.S. government's inadequate emergency response and delayed evacuation exacerbated the suffering of those exposed to radiation, many of whom faced lifelong health complications like cancer, thyroid diseases, and genetic disorders. In addition to the immediate harm, Castle Bravo had significant geopolitical repercussions. Global disarmament efforts were fueled by the Japanese fishing crew's exposure, which heightened antinuclear sentiment in Japan. International nuclear policies were also greatly influenced by the test, which ultimately helped to draft the 1963 Partial Nuclear Test Ban Treaty, which outlawed nuclear testing in the atmosphere.

Castle Bravo is a potent reminder of the perils posed by nuclear weapons and the significance of ethical military and scientific procedures. The disaster's lessons highlight the importance of openness, morality, and international collaboration in averting nuclear disasters in the future. The enduring effects of nuclear testing on human life and the environment are evident in the long-term repercussions, even though impacted populations have received compensation and medical aid. In a larger sense, Castle Bravo continues to serve as a warning story that emphasizes the need for nuclear disarmament initiatives and the search for better, more sustainable international security regulations.

Acknowledgement

The author would like to thank the Universiti Tun Hussein Onn Malaysia for facilities provided that make the research possible.

References

- [1] Hill, K. 2019. *Castle Bravo Disaster A "Second Hiroshima"* [Video]. YouTube, March 1, 2019. https://www.youtube.com/watch?v=ew064gt2thY.
- [2] Kunkle, T., and B. Ristvet. 2013. Castle Bravo: Fifty Years of Legend and Lore—A Guide to Off-Site Radiation Exposures (DTRIAC SR-12-001; LA-UR-04-1400). Defense Threat Reduction Agency. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f42e0815d95b6b7e5195675362b77f126128 6459.
- [3] Hacker, B. C. 2010. Fallout from Bravo: The 1954 H-Bomb Test and Its Health Consequences (No. LLNL-CONF-464411). Lawrence Livermore National Laboratory. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f42e0815d95b6b7e5195675362b77f126128
- [4] Simon, Steven L., André Bouville, Harold L. Beck, Lynn R. Anspaugh, Kathleen M. Thiessen, F. Owen Hoffman, and Sergey Shinkarev. "Dose estimation for exposure to radioactive fallout from nuclear detonations." *Health physics* 122, no. 1 (2022): 1-20.
- [5] Hughes, Emlyn W., Monica Rouco Molina, Maveric KIL Abella, Ivana Nikolić-Hughes, and Malvin A. Ruderman. "Radiation maps of ocean sediment from the Castle Bravo crater." *Proceedings of the National Academy of Sciences* 116, no. 31 (2019): 15420-15424. https://doi.org/10.1073/pnas.1903478116.
- [6] International Atomic Energy Agency (IAEA). n.d. "Emergency Preparedness and Response." https://www.iaea.org/topics/emergency-preparedness-and-response-epr.
- [7] Federal Emergency Management Agency (FEMA). 2025. "Radiological Emergency Preparedness." Last modified February 27, 2025. https://www.fema.gov/emergency-managers/practitioners/hazardous-response-capabilities/radiological.
- [8] U.S. Nuclear Regulatory Commission (NRC). n.d. "What Do I Do in a Nuclear Emergency?" https://www.nrc.gov/about-nrc/emerg-preparedness/in-radiological-emerg.html.
- [9] National Security Archive. 2024. "Castle BRAVO at 70: The Worst Nuclear Test in U.S. History." February 29, 2024. https://nsarchive.gwu.edu/briefing-book/nuclear-vault/2024-02-29/castle-bravo-70-worst-nuclear-test-us-history.
- [10] Arms Control Association. n.d. "No Promised Land: The Shared Legacy of the Castle Bravo Nuclear Test." https://www.armscontrol.org/act/2014-03/no-promised-land-shared-legacy-castle-bravo-nuclear-test.
- [11] Simon, Steven L., André Bouville, Charles E. Land, and Harold L. Beck. "Radiation doses and cancer risks in the Marshall Islands associated with exposure to radioactive fallout from Bikini and Enewetak nuclear weapons tests: summary." *Health physics* 99, no. 2 (2010): 105-123. Hughes, E. W., M. R. Molina, M. K. I. L. Abella, I. Nikolić-Hughes, and M. A. Ruderman. 2019. "Radiation Maps of Ocean Sediment from the Castle Bravo Crater." *Proceedings of the National Academy of Sciences of the United States of America* 116 (31): 15420–15424. https://doi.org/10.1073/pnas.1903478116.
- [12] Musolino, Stephen V., N. Anthony Greenhouse, and Andrew P. Hull. "An estimate by two methods of thyroid absorbed doses due to BRAVO fallout in several Northern Marshall Islands." *Health physics* 73, no. 4 (1997): 651-662. https://doi.org/10.1097/00004032-199710000-00011.
- [13] Simon, Steven L., André Bouville, Charles E. Land, and Harold L. Beck. "Radiation doses and cancer risks in the Marshall Islands associated with exposure to radioactive fallout from Bikini and Enewetak nuclear weapons tests: summary." *Health physics* 99, no. 2 (2010): 105-123. https://doi.org/10.1097/HP.0b013e3181dc523c.

[14] Simon, Steven L., Susan M. Bailey, Harold L. Beck, John D. Boice, André Bouville, Aaron B. Brill, Michael N. Cornforth et al. "Estimation of radiation doses to US military test participants from nuclear testing: a comparison of historical film-badge measurements, dose reconstruction and retrospective biodosimetry." *Radiation research* 191, no. 4 (2019): 297-310.https://doi.org/10.1667/RR15247.1.