

Karya Journal of Emerging Technologies in Human Services 1, Issue 1 (2025) 48-63

48

Karya Journal of Emerging Technologies
in Human Services

Journal homepage:
https://karyailham.com.my/index.php/kjeths/index

ISSN: 3093-6551

The Challenges of Teaching and Learning Programming in Schools:
Insights from A Systematic Literature Review

Efa Elfrieda Abu Bakar1,*, Noor Dayana Abd Halim1, Mohd Fadzil Abdul Hanid1, Rita Inderawati2

1

2
Faculty of Social Sciences and Humanities, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
Fakultas Keguruan dan Ilmu Pendidikan, Universitas Sriwijaya Jl. Raya Palembang - Prabumulih No.KM. 32, Indralaya Indah, Kec. Indralaya,
Kabupaten Ogan Ilir, Sumatera Selatan 30862 Palembang Indonesia

ARTICLE INFO ABSTRACT

Article history:
Received 20 February 2025
Received in revised 13 March 2025
Accepted 4 April 2025
Available online 25 April 2025

The growing importance of programming education in schools is undeniable
as digital literacy becomes a critical competency for the 21st century.
However, various challenges hinder effective programming education,
including pedagogical constraints, cognitive difficulties, and technological
barriers. This systematic literature review provides a comprehensive analysis
of recent studies to identify and categorize these challenges.
Methodologically, a systematic review approach was adopted, involving
comprehensive searches across academic databases to identify relevant
studies. To achieve this, we conducted an extensive search of scholarly
articles from reputable databases such as Scopus and Web of Science,
focusing on studies published between 2023 and 2025. The flow of study
based on PRISMA framework. The database found (n=26) final primary data
was analysed. Numerical results from the selected literature highlight three
key themes: (1) Pedagogical Approaches and Strategies in Teaching
Programming, (2) Computational Thinking and Cognitive Development in
Programming Education, and (3) Technological Integration and Challenges in
Programming Education. Findings indicate that 38.5% highlighting the
effectiveness of game-based learning, project-based instruction, and peer
collaboration in improving engagement and learning outcomes; 30.8%
addressing cognitive overload, conceptual difficulties, and the need for
structured problem-solving frameworks to enhance students’ analytical skills;
and 30.8% emphasizing issues such as inadequate infrastructure, limited
access to programming tools, and insufficient teacher training. The findings
underscore the necessity of standardized pedagogical frameworks, enhanced
teacher training programs, and curriculum reforms to bridge the gap between
theory and practice. Future research should focus on developing scalable,
evidence-based strategies to address these challenges and ensure the
effective integration of programming education across diverse school
settings.

Keywords:
Programming education; teaching challenges;
learning challenges; school curriculum

* Corresponding author.
E-mail address: efaelfrieda@graduate.utm.my

https://doi.org/10.37934/kjeths.1.1.4863

https://karyailham.com.my/index.php/kjeths/index
mailto:efaelfrieda@graduate.utm.my

Karya Journal of Emerging Technologies in Human Services
Volume 1, Issue 1 (2025) 48-63

49

1. Introduction

In the digital age, programming has become an essential skill, not only for future software
developers but also for fostering computational thinking, problem-solving, and logical reasoning
among students [1,2] Many countries have integrated programming into school curricula, recognizing
its role in preparing students for a technology-driven world. However, the teaching and learning of
programming in schools remain a significant challenge. Despite the growing emphasis on digital
literacy, numerous obstacles hinder effective instruction, ranging from pedagogical issues to
infrastructural limitations and cognitive barriers among students [3]. One of the primary challenges
in teaching programming is the inherent complexity of the subject. Unlike traditional subjects,
programming requires both theoretical understanding and practical application. Students must grasp
abstract concepts such as variables, loops, and algorithms while simultaneously developing problem-
solving skills to apply these concepts effectively. The transition from understanding syntax to
implementing functional programs can be daunting, leading to frustration and a high dropout rate in
computer science courses [4]. Moreover, many students experience cognitive overload due to the
multi-layered nature of programming, which involves logical reasoning, debugging, and conceptual
abstraction simultaneously [5]. Teachers also face significant challenges in delivering programming
education effectively. Many educators lack sufficient training in computer science pedagogy,
particularly in schools where programming is a recent addition to the curriculum. Unlike subjects with
well-established teaching methodologies, programming requires innovative instructional strategies,
including problem-based learning, pair programming, and debugging exercises, which are not always
implemented effectively [6]. Additionally, educators often struggle to cater to diverse student needs,
as programming proficiency varies widely within a single classroom. Some students grasp concepts
quickly, while others require extensive guidance, making differentiated instruction a necessity yet a
logistical challenge [3].

Furthermore, the availability of technological resources plays a crucial role in programming
education. Many schools, especially in developing regions, lack adequate infrastructure, including
computers, stable internet access, and up-to-date software tools [7]. Without these resources,
hands-on programming practice becomes difficult, limiting students’ opportunities to develop coding
skills. Even in well-equipped schools, issues such as outdated curricula and insufficient access to
industry-relevant tools can prevent students from acquiring relevant programming competencies [8].
Another significant challenge is student motivation and engagement. Programming can be
intimidating for beginners, particularly if they do not see immediate relevance to real-world
applications. Studies indicate that students are more engaged when programming tasks are
contextualized within meaningful, real-life scenarios [9]. However, many school curricula focus
primarily on syntax and basic problem-solving without incorporating projects that align with
students’ interests, leading to disengagement and a lack of enthusiasm for programming [10]. Finally,
assessment methods in programming education pose another hurdle. Traditional assessment
techniques, such as written exams and quizzes, may not effectively measure students’ programming
proficiency. Instead, project-based evaluations, peer reviews, and debugging tasks provide a more
comprehensive understanding of students’ coding abilities [11]. However, implementing these
alternative assessment strategies requires additional effort from educators and institutions, further
complicating the teaching process.

Despite the increasing integration of programming into school curricula, there remains a
significant research gap in identifying scalable, evidence-based solutions that effectively address
pedagogical, cognitive, and technological barriers. While previous studies have explored individual
aspects such as computational thinking development, instructional strategies, and technology

Karya Journal of Emerging Technologies in Human Services
Volume 1, Issue 1 (2025) 48-63

50

integration, there is a lack of a comprehensive framework that synthesizes these dimensions to
provide actionable recommendations for educators. This study aims to bridge this gap by
systematically reviewing literature from 2023–2025, identifying key challenges, and proposing
research-backed interventions that enhance programming education effectiveness.

2. Literature Review

The teaching and learning of programming in schools present multifaceted challenges that stem

from pedagogical limitations, students' cognitive difficulties, and constraints in technology
integration. Research by Florou et al., [12] highlights the role of educators in facilitating self-
assessment among students learning programming concepts. Their study identifies major obstacles,
including students' struggles with evaluating their own learning progress and teachers' difficulties in
incorporating modern educational tools effectively. Additionally, the study underscores the
importance of guiding principles that enhance programming education, particularly in primary
schools. Sandstrak et al., [13] further elaborate on the pedagogical issues by examining different
instructional approaches used across campuses. Their research found that varying pedagogical
methods, such as top-down and bottom-up approaches, yield no significant differences in student
outcomes, suggesting that traditional teaching methods may not fully address the challenges novice
learners face. Similarly, Yang et al., [14] propose the use of graphic organizers to bridge knowledge
gaps in elementary students' computational thinking and programming learning. Their findings
indicate that structured visual aids significantly improve students’ programming skills and problem-
solving abilities, mitigating some of the cognitive difficulties inherent in learning programming at an
early age.

Assessment methodologies and student engagement strategies also pose critical challenges in
programming education. Sandstrak et al., [13] argue that the effectiveness of different assessment
methods—ranging from multiple-choice tests to portfolio-based evaluations—varies significantly
depending on the instructional context. Their study, conducted across three campuses, found that
while alternative assessments such as home exams during the pandemic helped maintain student
engagement, they did not necessarily lead to better learning outcomes. The findings suggest that
assessment techniques should be carefully aligned with pedagogical strategies to foster meaningful
learning experiences. Moreover, Oralbayeva et al., [15] emphasize the role of interactive learning
environments, such as Montessori-based child-robot interactions, in fostering long-term retention of
programming-related concepts. Their study on alphabet acquisition using robotics suggests that
interactive and self-directed learning models could be adapted to programming education,
addressing engagement-related challenges. In a related study, Ienco et al., [16] explore the
integration of educational robotics to promote hands-on learning experiences. Their research
demonstrates that programming within a real-world context, such as sustainability projects,
enhances students’ engagement and motivation, reinforcing the need for active learning strategies
in programming education.

Technological constraints and curriculum design further complicate programming instruction in
schools. Florou et al., [12] note that many teachers struggle with integrating modern educational
technologies into their teaching due to inadequate training and a lack of institutional support. This
issue is compounded by the rapid evolution of programming languages and tools, which often
outpace curriculum development. The lack of a standardized approach to incorporating programming
into school curricula further exacerbates the problem. Oralbayeva et al., [15] highlight how
structured, well-designed educational technologies, such as robotics-based learning, can provide
students with an adaptive learning environment, yet the successful implementation of such

Karya Journal of Emerging Technologies in Human Services
Volume 1, Issue 1 (2025) 48-63

51

technologies remains a challenge due to resource limitations. These findings indicate a pressing need
for curriculum reforms that ensure programming education is both accessible and adaptable to
technological advancements. The integration of programming education in schools presents multiple
challenges, ranging from digital competency gaps to pedagogical constraints. Dabengwa et al., [17]
explored the digital competencies of secondary school teachers in Zimbabwe and identified
significant disparities in digital literacy, particularly in rural areas where limited access to ICT tools
and infrastructure hinders effective teaching. While students demonstrated proficiency in basic
applications such as Microsoft Word and PowerPoint, programming-related competencies remained
largely underdeveloped. Similarly, Fante et al., [18] highlighted the evolving nature of game-based
learning (GBL) in STEM education, emphasizing the shift from technology-centric approaches to
strategies that prioritize engagement, motivation, and understanding of complex concepts. Despite
the potential of GBL to enhance programming education, its implementation faces obstacles such as
inadequate empirical validation and limited integration with computational thinking.

Additionally, Dai et al., [19] introduced an embodied, analogical, and disruptive (EAD) approach
to AI pedagogy, revealing the effectiveness of interactive learning methods in fostering abstract and
systems thinking. However, cognitive overload and communication challenges remain key
limitations, which are also relevant to programming education in schools. Another significant issue
in programming education is the complexity of aligning teaching methodologies with students’
cognitive and affective needs. Cohn et al., [20] proposed a human-AI collaborative model to enhance
STEM learning through multimodal learning analytics (MMLA). Their findings suggest that AI-
generated timelines can facilitate formative feedback, improving students’ computational model-
building skills. However, AI-based interventions struggle with interpreting student emotions and
social interactions, making it challenging to offer real-time, contextually appropriate feedback.
Moreover, game-based learning approaches analyzed by Fante et al., [21] revealed an increasing
focus on emotional and experiential learning components, signifying a broader need for instructional
methods that engage students both cognitively and affectively. Dabengwa et al., [17] further
emphasized the importance of problem-solving and digital content creation in programming
education, noting that despite technological advancements, digital safety and security remain major
concerns, particularly in underprivileged school environments. These findings indicate that while
innovative pedagogical approaches hold promise, their effectiveness is contingent upon addressing
foundational digital literacy gaps and ensuring equitable access to technological resources.

The systematic analysis of these studies underscores the necessity for a multifaceted approach
to overcoming challenges in teaching and learning programming in schools. The integration of AI,
multimodal analytics, and game-based learning can enhance students’ engagement and problem-
solving abilities, but these innovations require substantial empirical validation and infrastructural
support. In addition, policymakers must prioritize the development of digital competencies among
educators to ensure the effective implementation of programming curricula. Future research should
focus on bridging the digital divide, refining AI-based educational tools, and developing pedagogical
models that balance cognitive load with engagement strategies. Addressing these challenges will be
critical in fostering computational and reflective thinking skills among students, thereby preparing
them for the digital economy. The increasing integration of programming education in schools has
revealed numerous challenges related to pedagogy, student engagement, and curriculum alignment.
Vrbančič et al., [22] investigated the effectiveness of graphical versus textual programming
environments in secondary school mechatronics education. Their findings suggest that students who
began with textual programming before transitioning to graphical methods exhibited superior
learning outcomes and knowledge transfer. This aligns with Luo et al., [23] who emphasize the
necessity of interdisciplinary pedagogical strategies, including problem-based learning and cognitive

Karya Journal of Emerging Technologies in Human Services
Volume 1, Issue 1 (2025) 48-63

52

development, to improve programming instruction in business schools. Similarly, Zhang et al., [24]
explored the embodied learning approach in robotics education and found that students who
engaged in hands-on, interactive programming activities demonstrated higher motivation and
learning engagement. These studies collectively highlight the pedagogical challenges associated with
determining the most effective instructional strategies for programming education, suggesting that
a structured, sequential approach from textual to graphical programming may yield better results.

Another significant challenge in teaching programming at the school level is the gap between
teachers' preparedness and the theoretical frameworks guiding computational thinking (CT). Holstein
et al., [25] examined teachers' perceptions of integrating CT through a constructionist approach using
Scratch and found that while some educators fully embraced this methodology, others struggled with
time constraints and curriculum alignment. This issue is further complicated by the findings of Ismail
et al., [26] who explored the relationship between Neuro-Linguistic Programming (NLP) and
psychological flexibility among secondary school students. Their study suggests that students'
adaptability to programming concepts may be influenced by their cognitive flexibility, highlighting
the need for tailored pedagogical strategies. Luo et al., [23] also reported that business students
faced difficulties in error handling and theoretical application, which parallels challenges
encountered in secondary education. Collectively, these studies indicate that effective programming
education requires well-prepared educators, structured curriculum integration, and strategies that
foster both cognitive flexibility and practical engagement.

The emergence of artificial intelligence (AI) tools, such as ChatGPT, presents additional challenges
and opportunities in programming instruction. Husain [27] examined programming instructors'
perspectives on the integration of AI-based chatbots in education, revealing mixed perceptions
regarding its effectiveness. While AI tools can assist in debugging and providing instant feedback,
concerns regarding over-reliance and reduced problem-solving skills were prevalent. Zhang et al.,
[24] demonstrated that interactive robotics education fosters engagement, yet AI-driven tools must
be integrated carefully to maintain students' cognitive involvement. Additionally, Holstein et al., [25]
stressed that balancing constructionist approaches with institutional constraints remains a major
challenge.

These studies highlight the critical need for educational policies that guide the responsible use of
AI in programming instruction, ensuring it supplements rather than replaces fundamental problem-
solving and coding skills.

3. Methodology
3.1 Identification

For this study, a large amount of pertinent literature was selected using many crucial phases in

the systematic review process. After choosing keywords, relevant terms are looked up using
dictionaries, thesaurus, encyclopedias, and previous studies. Following the creation of the search
strings for the Scopus and Web of Science databases, all pertinent keywords were chosen (see Table
1). For the current study project, 2444 papers were successfully obtained from both databases during
the first stage of the systematic review procedure.

Karya Journal of Emerging Technologies in Human Services
Volume 1, Issue 1 (2025) 48-63

53

Table 1
 The search string

Scopus

TITLE-ABS-KEY (challenges AND teaching AND learning AND
programming AND schools) AND PUBYEAR > 2022 AND PUBYEAR <
2026 AND (LIMIT-TO (DOCTYPE , "ar")) AND (LIMIT-TO (PUBSTAGE
, "final")) AND (LIMIT-TO (SRCTYPE , "j")) AND (LIMIT-TO (
LANGUAGE , "English")) AND (LIMIT-TO (SUBJAREA , "SOCI"))

 Date of Access: March 2025
Web of Science challenges AND teaching AND learning AND programming AND

schools (Topic) and Article (Document
Types) and English (Languages) and Article(Document
Types) and English (Languages) and 2025 or 2024 or 2023 (Publication
Years) and Article (Document
Types) and 2025 or 2024 or 2023(Publication Years) and Education
Educational Research (Web of Science Categories) and 6.11 Education
& Educational Research (Citation Topics Meso)

 Date of Access: March 2025

3.2 Screening

The variety of possibly pertinent research materials is examined throughout the screening phase
to find information that supports the predetermined research questions. The selection of research
materials relevant to the challenges of teaching and learning programming in schools is one of the
content-related criteria that are frequently used at this point. Duplicate papers are now removed
from the list of papers that were obtained. 2316 articles were excluded in the first screening phase,
and 128 papers were examined in the second phase using the various exclusion and inclusion criteria
described in this study (see Table 2). As the main source of useful suggestions, literature (research
articles) was given precedence. This includes reviews, meta-syntheses, meta-analyses, monographs,
book series, chapters, and conference proceedings that have not been addressed in recent studies.
Furthermore, the study was limited to English-language literature published between 2023 and 2025.
8 publications were ultimately rejected because of duplication issues.

Table 2
The selection criterion is searching

Criterion Inclusion Exclusion

Language English Non-English

Timeline 2023 – 2025 < 2023
Literature type Journal (Article) Conference, Book, Review

Publication Stage Final In Press

Categories Education & Educational
Research

Besides Education &
Educational Research

3.3 Eligibility

The final set of materials for evaluation is prepared once all inclusion and exclusion criteria have
been met. To help readers identify the precise research items supporting the study's findings, it is
essential to disclose the full list of research items included in this sample. There are 120 things in the
third tier, which is known as eligibility. Every article title and noteworthy passage was carefully
examined at this stage to make sure it met the inclusion requirements and was pertinent to the goals

Karya Journal of Emerging Technologies in Human Services
Volume 1, Issue 1 (2025) 48-63

54

of the study. As a result, 94 articles were rejected since their titles and abstracts had no discernible
relationship to the objectives of the study. In the end, 26 manuscripts were left for assessment (see
Figure 1).

3.4 Data Abstraction and Analysis

A range of research designs (quantitative methodologies) were examined and synthesized using

an integrative analysis as one of the assessment strategies. Finding pertinent subjects and subtopics
was the aim of the competent study. The initial phase of the theme's development was the data
collection stage. The authors carefully examined a collection of 26 articles for claims or information
pertinent to the subjects of the current investigation, as seen in Figure 1. The authors then assessed
the important recent research on the difficulties of school programming for teaching and learning.
Both the research findings and the methods employed in each study are being examined. The author
then worked with other co-authors to create themes based on the data in the context of this study.
Throughout the data analysis process, a log was maintained to document any analyses, opinions,
puzzles, or other ideas pertinent to the interpretation of the data. In order to identify any
discrepancies in the theme design process, the authors lastly contrasted the outcomes. The writers
debate any disputes between the notions among themselves, which is worth mentioning. Eventually,
the generated themes were adjusted to guarantee coherence. Two specialists conducted the analysis
selection to ascertain the problems' validity. By establishing the domain validity, the expert review
process guarantees each subtheme's appropriateness, significance, and clarity. The questions are as
follows below:

1. What are the most effective pedagogical approaches and strategies for teaching
programming at different educational levels?

2. How does computational thinking and cognitive development contribute to students' learning
outcomes in programming education?

3. What are the challenges and opportunities in integrating emerging technologies (e.g., AI, AR,
robotics) into programming education?

Karya Journal of Emerging Technologies in Human Services
Volume 1, Issue 1 (2025) 48-63

55

Fig. 1. Flow diagram of the proposed searching study by Moher et al., [28]

4. Result and Findings

Numerical results from the selected literature highlight key themes, which are (1) Pedagogical

Approaches and Strategies in Teaching Programming, (2) Computational Thinking and Cognitive
Development in Programming Education and (3) Technological Integration and Challenges in
Programming Education.

4.1 Pedagogical Approaches and Strategies in Teaching Programming

The teaching of programming in schools presents several pedagogical challenges, necessitating

innovative strategies to enhance student engagement and learning outcomes. Various studies have
explored approaches such as contrasting cases, graphic organizers, self-assessment, and
interdisciplinary pedagogies to address these challenges and improve the effectiveness of
programming education. One of the fundamental difficulties in teaching programming is engaging
novice learners, particularly at the elementary school level. Ma et al., [29] investigated the
effectiveness of a contrasting cases approach in elementary school programming education. Their
study demonstrated that this method improved learning outcomes, engagement, and cognitive load
management, thereby facilitating a more structured learning process. Similarly, Yang et al., [30]
highlighted the benefits of using graphic organizers to assist elementary students in developing

Karya Journal of Emerging Technologies in Human Services
Volume 1, Issue 1 (2025) 48-63

56

computational thinking and programming skills. Their quasi-experimental study revealed that graphic
organizers served as cognitive bridges, enabling students to connect new knowledge with prior
learning, ultimately enhancing problem-solving skills. Additionally, Florou et al., [31] emphasized the
role of educators in facilitating self-assessment in programming learning, identifying the need for
structured guidance to help students overcome learning obstacles. These studies collectively
underscore the importance of structured instructional strategies in supporting novice programmers.

The integration of programming in diverse educational settings requires tailored approaches to
optimize learning. Vrbancic et al., [32] investigated the effectiveness of graphical versus textual
programming environments in microcontroller programming courses at the secondary education
level. Their findings indicated that starting with textual programming before transitioning to
graphical environments resulted in better learning gains and knowledge transfer. This aligns with Luo
et al., [33] who explored interdisciplinary pedagogical approaches for teaching programming in
business schools. Their study revealed that integrating problem-based learning, cognitive
development strategies, and collaborative learning enhanced student performance and logical
reasoning. Zhang et al., [34] further expanded on this by demonstrating how an embodied learning-
based programming approach in robotics education significantly improved student engagement,
motivation, and learning outcomes. These findings suggest that the sequence of instructional
methods and interdisciplinary approaches can play a crucial role in improving programming
education. Another key challenge in programming education lies in the selection of appropriate
teaching materials and methods. Bjursten et al., [35] examined the factors influencing technology
teachers' choice of programming materials in Swedish primary schools. Their study found that
teachers often struggle with balancing curricular demands and the availability of suitable teaching
resources, which impacts the effectiveness of programming instruction. Similarly, Zhang et al., [34]
highlighted the difficulties students face when learning abstract programming concepts in robotics
education, suggesting that embodied learning techniques can mitigate some of these challenges.
Moreover, Florou et al., [31] emphasized the importance of aligning teaching strategies with student
self-assessment mechanisms to support personalized learning. These studies highlight the need for
adaptable and resource-efficient teaching methods to enhance programming education.

However, several pedagogical interventions have demonstrated success in improving
programming education. Cheng et al., [36] highlighted how game-based programming environments
such as CodeCombat and Scratch improved student engagement and motivation. Grover et al., [4]
demonstrated that project-based learning, where students develop real-world applications,
significantly enhanced their problem-solving abilities and computational thinking. Additionally,
Barczak et al., [37] emphasized the effectiveness of peer collaboration in reducing learning anxiety
and fostering a more supportive learning environment. These case studies underscore the need for
diversified instructional approaches tailored to students' varying levels of expertise and learning
preferences. In conclusion, the pedagogical challenges of teaching programming in schools require
diverse and structured strategies to enhance student learning. Research suggests that employing
contrasting cases, graphic organizers, interdisciplinary approaches, and structured self-assessment
mechanisms can significantly improve programming education. Additionally, the sequencing of
programming environments and the careful selection of instructional materials play crucial roles in
optimizing learning outcomes. Future research should explore the long-term impact of these
pedagogical strategies on students’ computational thinking and problem-solving abilities.

Karya Journal of Emerging Technologies in Human Services
Volume 1, Issue 1 (2025) 48-63

57

4.2 Computational Thinking and Cognitive Development in Programming Education

The integration of computational thinking into programming education has been widely

acknowledged as crucial for fostering problem-solving skills and cognitive development. However,
various challenges persist in effectively teaching programming in school environments. One
significant challenge is the need to design engaging and effective teaching methodologies that
enhance students' motivation and critical thinking skills. Table 3 shows the findings on the integration
of computational thinking into programming education.

Table 3
The findings on the integration of computational thinking into programming education

No
Author

Name and
Year

Objectives Methodologies Findings Conclusion & Future
Research

1

Chang et
al.,[38]

2023

To investigate the impact of
a peer assessment-based

Scrum project (PA-SP)
learning system on students'

learning motivation,
collaboration, and

communication skills in
computer programming

education.

Peer
assessment-
based Scrum

project (PA-SP)
learning system

PA-SP
significantly

improved
students' learning

motivation,
collaboration, and

communication
skills.

The study highlights the
effectiveness of PA-SP in
enhancing programming

education. Future
research should explore
its long-term impact and

applicability across
different education

levels.

2

Pan et al.,
[39]

2024

To examine the
effectiveness of game-based

learning in improving
students' computational
thinking competency and

engagement.

Game-based
learning

methodology

Game-based
learning positively

influenced
engagement but

did not
consistently

enhance
computational

thinking
competency.

Interactive approaches
should be

complemented with
structured learning
objectives. Further

research should
investigate how to

optimize game-based
learning for conceptual

mastery.

3

Chen et al.
[40]

2023

To explore self-regulation-
based computational
thinking learning in

Taiwanese primary school
students and its impact on

engagement.

Self-regulation-
based

computational
thinking
learning

Self-paced
learning

improved
engagement but

required
structured

guidance for
effective time
management.

The study suggests the
need for a standardized
computational thinking

framework. Future
research should focus on

optimizing self-paced
learning structures.

4

Yurdakok et
al., [41]

 2023

To analyze the effectiveness
of physical programming

tools like Micro:bit in
enhancing computational

thinking skills.

Use of Micro:bit
as a physical

programming
tool

Physical
programming

tools were
effective, but
their impact
depended on

structured
implementation

and teacher
expertise.

Teachers require better
training in integrating
physical programming
tools. Future research

should assess the
scalability of such tools
in different educational

settings.

5 Hassan et
al., [42]

To examine how thinking
maps with motivated

Thinking maps
combined with

Thinking maps
helped mitigate

Structured scaffolding
techniques are

Karya Journal of Emerging Technologies in Human Services
Volume 1, Issue 1 (2025) 48-63

58

 2023

learning strategies affect
students’ ability to solve
programming problems.

motivated
learning

strategies

cognitive
overload and

improved
problem-solving

skills.

necessary. Future
research should explore

how cognitive load
management strategies

can be standardized.

6

Holstein et
al., [43]

2025

To investigate teachers’
perceptions of integrating

computational thinking with
school subjects using a

constructionist approach via
Scratch.

Constructionist
approach using

Scratch

Some teachers
embraced the

approach, while
others struggled
with assessment

requirements.

Professional
development programs
are essential to enhance

teachers' ability to
implement

computational thinking
concepts. Future

research should focus on
policy-level

interventions.

7

Naya-Varela
et al., [44]

2023

To evaluate the
effectiveness of the Robobo

SmartCity model as an
educational tool for

computational intelligence
learning.

Robobo
SmartCity

model
implementation

The model
provided

innovative
learning

experiences, but
adoption was
hindered by

infrastructure
limitations and
teacher training

gaps.

Effective technology
integration requires
addressing resource
constraints. Future

research should explore
ways to enhance

accessibility and teacher
readiness for such tools.

Cognitive load theory by Sweller, [45] plays a crucial role in understanding students' difficulties

in learning programming. The intrinsic complexity of programming concepts, such as abstraction and
algorithmic logic, contributes to cognitive overload, particularly for novice learners. Research
suggests that reducing extraneous cognitive load through structured instructional strategies such as
worked examples, scaffolding, and adaptive learning pathways can enhance learning efficiency [46].
Additionally, differentiated instruction, including visual programming environments like Scratch for
beginners and textual programming for advanced learners, can help accommodate diverse cognitive
capacities and learning speeds [34]. Incorporating cognitive load management techniques into
programming education is essential for fostering better retention and problem-solving skills.

The reviewed studies collectively emphasize the multifaceted challenges of teaching and learning
programming in schools. Key issues include the need for structured and engaging teaching
methodologies, standardized curriculum models, cognitive load management, teacher preparedness,
student self-efficacy, and effective technology integration. Addressing these challenges requires a
collaborative effort among educators, policymakers, and researchers to develop comprehensive
strategies that bridge the gap between theoretical approaches and practical classroom
implementation.

4.3 Technological Integration and Challenges in Programming Education

The integration of technology in programming education presents significant challenges,
particularly in secondary schools, where students often struggle with complex programming
concepts and logic structures. Traditional teaching methodologies fail to sustain engagement,
necessitating alternative approaches such as open educational resources (OERs) to enhance learning
outcomes. Pereira et al., [47] highlight the role of REA-LP, an OER designed to facilitate programming

Karya Journal of Emerging Technologies in Human Services
Volume 1, Issue 1 (2025) 48-63

59

instruction by integrating multimedia content and interactive components. Their empirical findings
suggest that students benefit from such tools, exhibiting increased motivation and comprehension.
However, challenges persist due to limited access to technology and pedagogical frameworks that
fail to optimize digital resources for diverse learning needs. Similarly, Husain [48] underscores the
need for well-structured pedagogical designs when incorporating artificial intelligence-driven
platforms like ChatGPT in programming instruction, emphasizing that unstructured AI use may lead
to reliance on automated responses rather than fostering problem-solving skills. Pappa et al., [49]
further corroborate these findings, indicating that teachers in primary education often lack the
confidence and training to effectively integrate technology, exacerbating difficulties in programming
instruction.

 A major issue in programming education is the variability in teachers' preparedness to deliver
technology-integrated instruction. In Swedish primary schools, teachers independently select
programming learning environments (PLEs) without standardized guidelines, leading to inconsistent
implementation [35]. The preference for visual programming languages (VPLs) like Scratch is
prevalent, yet many teachers lack adequate pedagogical content knowledge (PCK) to transition
students from block-based programming to textual coding. This gap in professional development
results in disparities in students' foundational programming knowledge. Pereira et al., [47] similarly
note that while REA-LP promotes engagement, its effectiveness hinges on instructors' ability to
integrate it effectively within curricula. Additionally, Pappa et al., [49] report that teachers struggle
with unclear curriculum frameworks and insufficient professional development opportunities,
further complicating programming instruction. The integration of AI-based instructional tools such as
ChatGPT offers potential benefits but also raises concerns regarding dependency and pedagogical
efficacy. Husain [48] identifies ChatGPT as a supportive tool for students in coding exercises,
debugging, and generating alternative solutions. However, programming instructors’ express
concerns about students' overreliance on AI-generated code, which may hinder their development
of critical thinking skills. Furthermore, immersive environments such as Augmented Reality (AR) and
Virtual Reality (VR) have shown promise in making abstract programming concepts more tangible
[24]. A more structured technology integration strategy, incorporating both emerging and traditional
tools, is essential to mitigate barriers such as limited access to resources and inadequate teacher
training.

Pereira et al., [47] similarly argue that while OERs provide structured learning opportunities, their
success is contingent upon students' ability to engage actively rather than passively consume
content. Additionally, Bjursten et al., [35] highlight systemic challenges, including the limited
availability of structured professional development courses, which leave educators without sufficient
resources to incorporate emerging technologies effectively. A critical barrier to effective
programming education is the lack of a cohesive strategy for integrating emerging technologies into
existing curricula. The absence of well-defined pedagogical frameworks leads to inconsistent
technology adoption across educational institutions. Pappa et al., [49] emphasize the need for
professional development initiatives to equip educators with the necessary skills for integrating
programming technologies into their teaching. Moreover, Husain [48] notes that while AI tools can
streamline instructional delivery, their adoption should be accompanied by structured curricular
changes to mitigate potential drawbacks such as diminished analytical reasoning among students.
The reliance on visual programming languages without a clear transition strategy further complicates
the learning process, as observed by Bjursten et al., [35] who advocate for targeted training in textual
programming methodologies to ensure continuity in students' computational skill development.
Given these challenges, a comprehensive approach that includes professional training, curriculum
standardization, and effective technological implementation is essential. Pereira et al., [47] suggest

Karya Journal of Emerging Technologies in Human Services
Volume 1, Issue 1 (2025) 48-63

60

that interactive learning environments such as REA-LP can address engagement issues, yet they
require structured integration into broader instructional strategies. Similarly, Pappa et al., [49]
recommend the establishment of teaching communities to facilitate knowledge-sharing and support
among educators. Husain [48] underscores the importance of balancing AI integration with
traditional pedagogical methods to prevent overreliance on automated solutions. Addressing these
concerns will require ongoing research and policy adjustments to ensure that programming
education remains both effective and adaptive to technological advancements.

5. Conclusions

By addressing the pedagogical challenges of programming education necessitates the
implementation of diverse and structured strategies, such as contrasting cases, graphic organizers,
and interdisciplinary approaches, which have been shown to enhance student engagement and
learning outcomes. Continued exploration of these methods will be essential for optimizing
programming instruction and fostering students' computational thinking and problem-solving skills.
The effective integration of computational thinking into programming education faces significant
challenges, including the need for engaging teaching methodologies, standardized curricula, and
improved teacher preparedness. Addressing these multifaceted issues through collaboration among
educators, policymakers, and researchers is essential for enhancing student learning outcomes and
fostering a more effective programming education environment.

In summary, the integration of technology in programming education faces significant hurdles,
primarily stemming from inconsistent teacher preparedness and a lack of cohesive pedagogical
frameworks. To enhance learning outcomes, it is crucial to implement structured professional
development, standardized curricula, and effective use of educational resources, ensuring that both
educators and students can navigate the complexities of programming in an increasingly digital
landscape.

Acknowledgement
This research was not funded by any grant. We sincerely appreciate the invaluable insights and
support provided by Associate Professor Dr. Noor Dayana Abd Halim, Dr. Mohd Fadzil Abdul Hanid,
Dr. Rita Inderawati, and the Ministry of Education. Their expertise, constructive feedback, and
unwavering encouragement were instrumental in shaping the direction of this research and ensuring
the successful completion of this manuscript.

References
[1] Angeli, Charoula, and Michail Giannakos. "Computational thinking education: Issues and challenges." Computers

in human behavior 105 (2020): 106185. https://doi.org/10.1016/j.chb.2019.106185
[2] Maraza-Quispe, Benjamín, Ashtin Maurice Sotelo-Jump, Olga Melina Alejandro-Oviedo, Lita Marianela Quispe-

Flores, Lenin Henry Cari-Mogrovejo, Walter Cornelio Fernandez-Gambarini, and Luis Ernesto Cuadros-Paz.
"Towards the development of computational thinking and mathematical logic through scratch." International
Journal of Advanced Computer Science and Applications 12, no. 2 (2021): 332-338.
https://doi.org/10.14569/IJACSA.2021.0120242

 [3] Zhao, Li, Xiaohong Liu, Chenhui Wang, and Yu-Sheng Su. "Effect of different mind mapping approaches on primary
school students’ computational thinking skills during visual programming learning." Computers & Education 181
(2022): 104445. https://doi.org/10.1016/j.compedu.2022.104445

 [4] Grover, Shuchi, and Roy Pea. "Computational thinking: A competency whose time has come." Computer science
education: Perspectives on teaching and learning in school 19, no. 1 (2018): 19-38.
https://doi.org/10.5040/9781350057142.ch-003

https://doi.org/10.1016/j.chb.2019.106185
https://doi.org/10.14569/IJACSA.2021.0120242
https://doi.org/10.1016/j.compedu.2022.104445
https://doi.org/10.5040/9781350057142.ch-003

Karya Journal of Emerging Technologies in Human Services
Volume 1, Issue 1 (2025) 48-63

61

[5] Lishinski, Alex, Aman Yadav, Richard Enbody, and Jon Good. "The influence of problem solving abilities on students'
performance on different assessment tasks in CS1." In Proceedings of the 47th ACM technical symposium on
computing science education, pp. 329-334. 2016. https://doi.org/10.1145/2839509.2844596

[6] Saqr, Mohammed, Ville Tuominen, Teemu Valtonen, Erkko Sointu, Sanna Väisänen, and Laura Hirsto. "Teachers’
learning profiles in learning programming: The big picture!." In Frontiers in Education, vol. 7, p. 840178. Frontiers
Media SA, 2022. https://doi.org/10.3389/feduc.2022.840178

[7] Adedoyin, Adeyinka, F. O. Enebe, R. A. Oyekunle, and N. A. Balogun. "Design and implementation of an online
teaching and learning management system." FUDMA Journal of Sciences 7, no. 1 (2023): 148-155.
https://doi.org/10.33003/fjs-2023-0701-1266

[8] Sentance, Sue, and Andrew Csizmadia. "Computing in the curriculum: Challenges and strategies from a teacher’s
perspective." Education and information technologies 22 (2017): 469-495. https://doi.org/10.1007/s10639-016-
9482-0

[9] Brennan, Karen, and Mitchel Resnick. "New frameworks for studying and assessing the development of
computational thinking." In Proceedings of the 2012 annual meeting of the American educational research
association, Vancouver, Canada, vol. 1, p. 25. 2012.

[10] Batiha, Q., N. Sahari, N. Aini, and N. Mohd. "Adoption of visual programming environments in programming
learning." International Journal on Advanced Science, Engineering and Information Technology 12, no. 5 (2022):
1921. https://doi.org/10.18517/ijaseit.12.5.15500

[11] C. Watson and F. W. B. Li, “Version of attached le : Failure Rates in Introductory Programming Revisited,”
Proceedings of the 2014 conference on Innovation technology in computer science education (ITiCSE’14), vol. 44,
no. July, 2016. https://doi.org/10.1145/2591708.2591749

[12] Florou, C., G. Stamoulis, A. Xenakis, and A. Plageras. "The role of educators in facilitating students’ self-assessment
in learning computer programming concepts: addressing students’ challenges and enhancing learning." Education
and Information Technologies (2024): 1-24. https://doi.org/10.1007/s10639-024-13172-2

[13] Sandstrak, Grethe, Bjorn Klefstad, Arne Styve, and Kiran Raja. "Analyzing Pedagogic Practice and Assessments in a
Cross-Campus Programming Course." IEEE Transactions on Education (2024).
https://doi.org/10.1109/TE.2024.3465870

[14] Yang, Tzu-Chi, and Zhi-Shen Lin. "Enhancing elementary school students' computational thinking and programming
learning with graphic organizers." Computers & Education 209 (2024): 104962.
https://doi.org/10.1016/j.compedu.2023.104962

[15] Oralbayeva, Nurziya, Zhansaule Telisheva, Aida Amir, Aida Zhanatkyzy, Arna Aimysheva, and Anara Sandygulova.
"Moveable Älıpbi: Design of Montessori-Based Child-Robot Interaction for Long-Term Alphabet
Learning." International Journal of Social Robotics (2024): 1-16. https://doi.org/10.1007/s12369-024-01189-z

[16] Ienco, Andrea, Bruno Tiribilli, Chiara D’Errico, Armida Torreggiani, Valentina Biasini, Sabrina Gualtieri, and Pietro
Galizia. "Sorting Materials using Programmable Lego© Robot: an Educational Activity to Promote Sustainability
among Youngsters." In Conference Proceedings. New Perspectives in Science Education 2024. 2024.

[17] Dabengwa, Israel Mbekezeli, Sibonile Moyo, Smart Ncube, Tinashe Byron Gashirai, Daga Makaza, Paul Makoni,
Notice Pasipamire et al. "Exploring digital competences in Zimbabwean secondary schools using a multimodal
view: a hermeneutical phenomenography study." Cogent Education 11, no. 1 (2024): 2387911.
https://doi.org/10.1080/2331186X.2024.2387911

 [18] Fante, Chiara, Fabrizio Ravicchio, and Flavio Manganello. "Navigating the Evolution of Game-Based Educational
Approaches in Secondary STEM Education: A Decade of Innovations and Challenges." Education Sciences 14, no. 6
(2024): 662. https://doi.org/10.3390/educsci14060662

[19] Dai, Yun, Ziyan Lin, Ang Liu, and Wenlan Wang. "An embodied, analogical and disruptive approach of AI pedagogy
in upper elementary education: An experimental study." British Journal of Educational Technology 55, no. 1 (2024):
417-434. https://doi.org/10.1111/bjet.13371

[20] Cohn, Clayton, Caitlin Snyder, Joyce Horn Fonteles, Ashwin TS, Justin Montenegro, and Gautam Biswas. "A
multimodal approach to support teacher, researcher and AI collaboration in STEM+ C learning
environments." British Journal of Educational Technology 56, no. 2 (2025): 595-620.
https://doi.org/10.1111/bjet.13518

[21] Fante, Chiara, Fabrizio Ravicchio, and Flavio Manganello. "Navigating the Evolution of Game-Based Educational
Approaches in Secondary STEM Education: A Decade of Innovations and Challenges." Education Sciences 14, no. 6
(2024): 662. https://doi.org/10.3390/educsci14060662

 [22] Vrbančič, Franc, and Slavko Kocijančič. "Strategy for learning microcontroller programming—a graphical or a t.
 extual start?." Education and Information Technologies 29, no. 4 (2024): 5115-5137.
 https://doi.org/10.1007/s10639-023-12024-9
 [23] Luo, Xiaojun, and Ismail Adelopo. "Exploring pedagogies, opportunities and challenges of teaching and learning

https://doi.org/10.1145/2839509.2844596
https://doi.org/10.3389/feduc.2022.840178
https://doi.org/10.33003/fjs-2023-0701-1266
https://doi.org/10.1007/s10639-016-9482-0
https://doi.org/10.1007/s10639-016-9482-0
https://doi.org/10.18517/ijaseit.12.5.15500
https://doi.org/10.1145/2591708.2591749
https://doi.org/10.1007/s10639-024-13172-2
https://doi.org/10.1109/TE.2024.3465870
https://doi.org/10.1016/j.compedu.2023.104962
https://doi.org/10.1007/s12369-024-01189-z
https://doi.org/10.1080/2331186X.2024.2387911
https://doi.org/10.3390/educsci14060662
https://doi.org/10.1111/bjet.13371
https://doi.org/10.1111/bjet.13518
https://doi.org/10.3390/educsci14060662
https://doi.org/10.1007/s10639-023-12024-9

Karya Journal of Emerging Technologies in Human Services
Volume 1, Issue 1 (2025) 48-63

62

programming in business school." Journal of International Education in Business 18, no. 1 (2025): 26-46.
https://doi.org/10.1108/JIEB-05-2024-0060

[24] Zhang, Xinli, Yuchen Chen, Danqing Li, Lailin Hu, Gwo-Jen Hwang, and Yun-Fang Tu. "Engaging young students in
effective robotics education: An embodied learning-based computer programming approach." Journal of
Educational Computing Research 62, no. 2 (2024): 532-558. https://doi.org/10.1177/07356331231213548

[25] Holstein, Simona, and Anat Cohen. "Scratch Teachers' Perceptions of Teaching Computational Thinking with School
Subjects in a Constructionist Approach." Thinking Skills and Creativity (2025): 101772.
https://doi.org/10.1016/j.tsc.2025.101772

[26] Ismail, Ahmed Mohamed Bani, and Faisal Jaber Al-Ajmi. "Neuro-linguistic programming and its relationship with
psychological flexibility among secondary school students in Najran region." Qubahan Academic Journal 4, no. 1
(2024): 210-223. https://doi.org/10.48161/qaj.v4n1a379

[27] Husain, Anas. "Potentials of ChatGPT in computer programming: Insights from programming instructors." Journal
of Information Technology Education: Research 23 (2024): 002. https://doi.org/10.28945/5240

[28] D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, “Preferred reporting items for systematic reviews and meta-
analyses: the PRISMA Statement,” 2009. https://doi.org/10.1371/journal.pmed.1000097

[29] Ma, Ning, Jinglong Qian, Kaixin Gong, and Yao Lu. "Promoting programming education of novice programmers in
elementary schools: A contrasting cases approach for learning programming." Education and Information
Technologies 28, no. 7 (2023): 9211-9234. https://doi.org/10.1007/s10639-022-11565-9

[30] Yang, Tzu-Chi, and Zhi-Shen Lin. "Enhancing elementary school students' computational thinking and programming
learning with graphic organizers." Computers & Education 209 (2024): 104962.
https://doi.org/10.1016/j.compedu.2023.104962

[31] Florou, C., G. Stamoulis, A. Xenakis, and A. Plageras. "The role of educators in facilitating students’ self-assessment
in learning computer programming concepts: addressing students’ challenges and enhancing learning." Education
and Information Technologies (2024): 1-24. https://doi.org/10.1007/s10639-024-13172-2

[32] Vrbančič, Franc, and Slavko Kocijančič. "Strategy for learning microcontroller programming—a graphical or a
textual start?." Education and Information Technologies 29, no. 4 (2024): 5115-5137.
https://doi.org/10.1007/s10639-023-12024-9

[33] Luo, Xiaojun, and Ismail Adelopo. "Exploring pedagogies, opportunities and challenges of teaching and learning
programming in business school." Journal of International Education in Business 18, no. 1 (2025): 26-46.
https://doi.org/10.1108/JIEB-05-2024-0060

[34] Zhang, Xinli, Yuchen Chen, Danqing Li, Lailin Hu, Gwo-Jen Hwang, and Yun-Fang Tu. "Engaging young students in
effective robotics education: An embodied learning-based computer programming approach." Journal of
Educational Computing Research 62, no. 2 (2024): 532-558. https://doi.org/10.1177/07356331231213548

[35] Bjursten, Eva-Lena, Tor Nilsson, and Gunnar Jonsson. "Factors influencing Swedish grades 4–6 technology teachers’
choice of teaching and learning material in programming education." International Journal of Technology and
Design Education 34, no. 4 (2024): 1275-1303. https://doi.org/10.1007/s10798-023-09860-8

[36] Cheng, Yu-Ping, Chin-Feng Lai, Yun-Ting Chen, Wei-Sheng Wang, Yueh-Min Huang, and Ting-Ting Wu. "Enhancing
student's computational thinking skills with student-generated questions strategy in a game-based learning
platform." Computers & Education 200 (2023): 104794. https://doi.org/10.1016/j.compedu.2023.104794

[37] Barczak, Andre LC, Anuradha Mathrani, Binglan Han, and Napoleon H. Reyes. "Automated assessment system for
programming courses: a case study for teaching data structures and algorithms." Educational technology research
and development 71, no. 6 (2023): 2365-2388. https://doi.org/10.1007/s11423-023-10277-2

[38] Chang, Shao-Chen, and Charoenchai Wongwatkit. "Effects of a peer assessment-based scrum project learning
system on computer programming’s learning motivation, collaboration, communication, critical thinking, and
cognitive load." Education and Information Technologies 29, no. 6 (2024): 7105-7128.
https://doi.org/10.1007/s10639-023-12084-x

[39] Pan, Yanjun, Elizabeth L. Adams, Leanne R. Ketterlin-Geller, Eric C. Larson, and Corey Clark. "Enhancing middle
school students’ computational thinking competency through game-based learning." Educational technology
research and development 72, no. 6 (2024): 3391-3419. https://doi.org/10.1007/s11423-024-10400-x

[40] Chen, Chien-Yu, Shih-Wen Su, Yu-Zhi Lin, and Chuen-Tsai Sun. "The Effect of Time Management and Help-Seeking
in Self-Regulation-Based Computational Thinking Learning in Taiwanese Primary School
Students." Sustainability 15, no. 16 (2023): 12494. https://doi.org/10.3390/su151612494

[41] Yurdakök, Ezgi Arzu, and Filiz Kalelioğlu. "The Effect of Teaching Physical Programming on Computational Thinking
Skills and Self-Efficacy Perceptions Towards Computational Thinking." Journal of Educational Computing
Research 62, no. 3 (2024): 785-815. https://doi.org/10.1177/07356331231220313

[42] Hassan, Nurul Nadia, Siti Salbiah Hamzah, Nurkhuzaimah Fazreen Mohd Jalaluddin, Muhammad Zaffwan Idris, and
Che Soh Said. "Mediation of Motivated Strategies for Learning for Thinking Maps Involvement Towards

https://doi.org/10.1108/JIEB-05-2024-0060
https://doi.org/10.1177/07356331231213548
https://doi.org/10.1016/j.tsc.2025.101772
https://doi.org/10.48161/qaj.v4n1a379
https://doi.org/10.28945/5240
https://doi.org/10.1371/journal.pmed.1000097
https://doi.org/10.1007/s10639-022-11565-9
https://doi.org/10.1016/j.compedu.2023.104962
https://doi.org/10.1007/s10639-024-13172-2
https://doi.org/10.1007/s10639-023-12024-9
https://doi.org/10.1108/JIEB-05-2024-0060
https://doi.org/10.1177/07356331231213548
https://doi.org/10.1007/s10798-023-09860-8
https://doi.org/10.1016/j.compedu.2023.104794
https://doi.org/10.1007/s11423-023-10277-2
https://doi.org/10.1007/s10639-023-12084-x
https://doi.org/10.1007/s11423-024-10400-x
https://doi.org/10.3390/su151612494
https://doi.org/10.1177/07356331231220313

Karya Journal of Emerging Technologies in Human Services
Volume 1, Issue 1 (2025) 48-63

63

Metacognitive Awareness." Asian Journal of University Education 19, no. 2 (2023): 381-394.
https://doi.org/10.24191/ajue.v19i2.22235

[43] Holstein, Simona, and Anat Cohen. "Scratch Teachers' Perceptions of Teaching Computational Thinking with School
Subjects in a Constructionist Approach." Thinking Skills and Creativity (2025): 101772.
https://doi.org/10.1016/j.tsc.2025.101772

[44] Naya-Varela, Martin, Sara Guerreiro-Santalla, Tamara Baamonde, and Francisco Bellas. "Robobo smartcity: An
autonomous driving model for computational intelligence learning through educational robotics." IEEE
Transactions on Learning Technologies 16, no. 4 (2023): 543-559. https://doi.org/10.1109/TLT.2023.3244604

[45] Sweller, John. "Cognitive load during problem solving: Effects on learning." Cognitive science 12, no. 2 (1988): 257-
285. https://doi.org/10.1016/0364-0213(88)90023-7

[46] Paas, Fred GWC, and Jeroen JG Van Merriënboer. "Variability of worked examples and transfer of geometrical
problem-solving skills: A cognitive-load approach." Journal of educational psychology 86, no. 1 (1994): 122.
https://doi.org/10.1037//0022-0663.86.1.122

[47] Pereira, Diego EF, and Rodrigo D. Seabra. "Open Educational Resource for Studying Algorithms and Programming
Logic: An Approach to the Technical Level Integrated with Secondary School." Informatics in Education 22, no. 3
(2023): 441-462. https://doi.org/10.15388/infedu.2023.17

 [48] Husain, Anas. "Potentials of ChatGPT in computer programming: Insights from programming instructors." Journal
of Information Technology Education: Research 23 (2024): 002. https://doi.org/10.28945/5240

[49] Pappa, Christina Ioanna, Despoina Georgiou, and Daniel Pittich. "Technology education in primary schools:
addressing teachers’ perceptions, perceived barriers, and needs." International Journal of Technology and Design
Education 34, no. 2 (2024): 485-503. https://doi.org/10.1007/s10798-023-09828-8

https://doi.org/10.24191/ajue.v19i2.22235
https://doi.org/10.1016/j.tsc.2025.101772
https://doi.org/10.1109/TLT.2023.3244604
https://doi.org/10.1016/0364-0213(88)90023-7
https://doi.org/10.1037/0022-0663.86.1.122
https://doi.org/10.15388/infedu.2023.17
https://doi.org/10.28945/5240
https://doi.org/10.1007/s10798-023-09828-8

